The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The newly identified CpG-N ODN208 protects mice from challenge with CpG-S ODN by decreasing TNF-alpha release.

Administration of an excess of oligodeoxynucleotides containing immunostimulatory CpG motifs (CpG-S ODNs) may induce systemic inflammatory response syndrome (SIRS) and sepsis. Therefore, it is important to develop neutralizing CpG ODNs (CpG-N ODNs), which can be used to reduce the release of cytokines induced by the presence of CpG-S ODNs. In the present study, CpG-N ODN208 (5'-TGCCGCGGCAGA-3'), a neutralizing twelve-oligodeoxynucleotide molecule recently identified in our laboratory, inhibited TNF-alpha release from human peripheral blood mononuclear cells (hPBMCs) and murine RAW264.7 cells induced by CpG-S ODN exposure in a dose- and time-dependent manner. Flow cytometry revealed that CpG-N ODN208 decreased cell-surface binding and internalization of 6-FAM-CpG-S ODN. However, the decreased cell-surface binding and internalization of CpG-S ODN could not completely account for the decreased TNF-alpha release. RT-PCR experiments revealed that CpG-N ODN treatment could down-regulate the CpG-S ODN-induced upregulation of Toll-like receptor 9 ( TLR9) mRNA expression. This finding suggested that the decreased cytokine release following CpG-N ODN treatment might be related to decreased TLR9 mRNA expression. In in vivo experiments, no protection was found when the ratio of CpG-N ODN to CpG-S ODN delivered to mice was 3:1. However, at a 5:1 ratio, CpG-N ODN208 could protect mice from an ordinarily lethal dose of CpG-S ODN. Furthermore, we found that CpG-N ODN208 treatment decreased serum TNF-alpha levels in mice injected with sublethal doses of CpG-S ODN whether the CpG-N ODN208 was added prior to or concurrent with the CpG-S ODN. Our results demonstrated that CpG-N ODN-mediated protection against a lethal challenge by CpG-S ODN was associated with the reduction of TNF-alpha release.[1]

References

  1. The newly identified CpG-N ODN208 protects mice from challenge with CpG-S ODN by decreasing TNF-alpha release. Wang, L., Jiang, W., Ding, G., Cao, H., Lu, Y., Luo, P., Zhou, H., Zheng, J. Int. Immunopharmacol. (2007) [Pubmed]
 
WikiGenes - Universities