The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast.

We show that phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2) by the protein kinase GCN2 mediates translational control of the yeast transcriptional activator GCN4. In vitro, GCN2 specifically phosphorylates the alpha subunit of rabbit or yeast eIF-2. In vivo, phosphorylation of eIF-2 alpha increases in response to amino acid starvation, which is dependent on GCN2. Substitution of Ser-51 with alanine eliminates phosphorylation of eIF-2 alpha by GCN2 in vivo and in vitro and abolishes increased expression of GCN4 and amino acid biosynthetic genes under its control in amino acid-starved cells. The Asp-51 substitution mimics the phosphorylated state and derepresses GCN4 in the absence of GCN2. Thus, an established mechanism for regulating total protein synthesis in mammalian cells mediates gene-specific translational control in yeast.[1]

References

  1. Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Dever, T.E., Feng, L., Wek, R.C., Cigan, A.M., Donahue, T.F., Hinnebusch, A.G. Cell (1992) [Pubmed]
 
WikiGenes - Universities