The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Development of a scintillation proximity assay for human insulin-like growth factor-binding protein 4 compatible with inhibitor high-throughput screening.

The insulin-like growth factor-binding protein 4 (IGFBP-4), which exists in many different tissues and biological fluids, modulates insulin-like growth factor 1 (IGF-1) bioavailability in part by competitive sequestration and prevention of interaction with cell membrane IGF-1 receptors. Accordingly, small molecules that inhibit the ability of IGF-1 to associate with IGFBP-4 may have clinical utility as regulators of cellular proliferation, survival, and differentiation. Currently, a polyethylene glycol-based precipitation of [(125)I]IGF-1 bound to IGFBP-4 is used to quantify selective IGFBP-4 ligand interactions. We have developed a novel 96-well plate scintillation proximity assay (SPA) for measuring small molecule interactions at IGFBP-4 using a biotinylated form of IGFBP-4 coupled to streptavidin-coated polyvinyltoluene (PVT) SPA microbeads and using [(125)I]IGF-1 as the endogenous ligand. Dose-displacement curves with unlabeled IGF-1 exhibited a mean K(d) value of 0.46 nM. Parallel studies using the nonselective IGFBP inhibitor, NBI-31772, generated a K(i) value of 47 nM. Under optimized conditions, the IGFBP-4 SPA was stable for up to 24h at room temperature and was unaffected by dimethyl sulfoxide (DMSO,<0.5%). This homogeneous binding assay is simple, stable, sensitive, and amenable to automation. The good signal/noise ratio (10:1) and Z' factor (0.7-0.8) make it compatible with high-throughput screening platforms for the identification of IGFBP-4 inhibitors. The IGFBP-4 binding assay may be expanded to other IGFBP members, in biotinylated form, to provide a powerful tool amenable to drug screening and the design of therapeutics to treat a variety of IGF-responsive diseases.[1]

References

 
WikiGenes - Universities