The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Transfection of HepG2 cells with hGSTA4 provides protection against 4-hydroxynonenal-mediated oxidative injury.

4-Hydroxynonenal (4-HNE) is a mutagenic alpha,beta-unsaturated aldehyde produced during oxidative injury that is conjugated by several glutathione S-transferase (GST) isoforms. The alpha class human GSTA4-4 enzyme (hGSTA4-4) has a particularly high catalytic efficiency toward 4-HNE conjugation. However, hGST4-4 expression is low in most human cells and there are other aldehyde metabolizing enzymes that detoxify 4-HNE. In the current study, we determined the effect of over-expression of hGSTA4 mRNA on the sensitivity of HepG2 cells to 4-HNE injury. HepG2 cells transfected with an hGSTA4 vector construct exhibited high steady-state hGSTA4 mRNA, high GST-4-HNE catalytic activities, but lower basal glutathione (GSH) concentrations relative to insert-free vector (control) cells. Exposure to 4-HNE elicited an increase in GSH concentrations in the control and hGSTA4 cells, although the dose-response of GSH induction differed among the two cell types. Specifically, hGSTA4 cells had significantly higher GSH concentrations when exposed to 5-15 microM 4-HNE, but not at 20 microM 4-HNE, suggesting extensive GSH utilization at high concentrations of 4-HNE. The hGSTA4 cells exhibited a significant growth advantage relative to control cells in the absence of 4-HNE, and a trend towards increased growth at low dose exposures to 4-HNE. However, the hGSTA4 cells did not exhibit a growth advantage relative to control cells at higher 4-HNE exposures associated with increased GSH utilization. As expected, the hGSTA4 cells showed resistance to 4-HNE stimulated lipid peroxidation at all 4-HNE doses. In summary, our data indicates that over-expression of hGSTA4 at levels conferring high GST-4-HNE conjugating activity confers a partial growth advantage to HepG2 cells and protects against 4-HNE oxidative injury. However, the loss of proliferative capacity of hGSTA4 cells challenged with levels of 4-HNE associated with severe oxidative stress indicates a role of other aldehyde metabolizing enzymes, and/or GSH-electrophile transporter proteins, in providing full cellular protection against 4-HNE toxicity.[1]

References

  1. Transfection of HepG2 cells with hGSTA4 provides protection against 4-hydroxynonenal-mediated oxidative injury. Gallagher, E.P., Huisden, C.M., Gardner, J.L. Toxicol. In. Vitro (2007) [Pubmed]
 
WikiGenes - Universities