The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Pomc knockout mice have secondary hyperaldosteronism despite an absence of adrenocorticotropin.

Aldosterone production is controlled by angiotensin II, potassium, and ACTH. Mice lacking Pomc and its pituitary product ACTH have been reported to have absent or low aldosterone levels, suggesting that ACTH is required for normal aldosterone production. However, this is at odds with the clinical finding that human aldosterone deficiency is not a component of secondary adrenal insufficiency. To resolve this, we measured plasma and urine electrolytes, together with plasma aldosterone and renin activity, in Pomc(-/-) mice. We found that these mice have secondary hyperaldosteronism (elevated aldosterone without suppression of renin activity), indicating that ACTH is not required for aldosterone production or release in vivo. Exogenous ACTH stimulates a further increase in aldosterone in Pomc(-/-) mice, whereas angiotensin II has no effect, and the combination of angiotensin II and ACTH is no more potent than ACTH alone. These data suggest that aldosterone production and release in vivo do not require the action of ACTH during development or postnatal life and that secondary hyperaldosteronism in Pomc(-/-) mice is a consequence of glucocorticoid deficiency.[1]

References

 
WikiGenes - Universities