The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Regulation of intracellular pH in BALB/c 3T3 cells. Bicarbonate raises pH via NaHCO3/HCl exchange and attenuates the activation of Na+/H+ exchange by serum.

There is abundant evidence implicating a role for intracellular pH (pHin) in the proliferative response of many cells to mitogenic agents. In mammalian cells, pHin is generally regulated by two systems: Na+/H+ exchange and HCO3- transport. Activation of Na+/H+ exchange is one of the earliest responses of mammalian cells to mitogens. In the absence of HCO3-, this activation raises the pHin. However, in the presence of HCO3-, the effect of mitogens on the pHin is unclear. HCO3- regulates pHin via mechanisms which can either acidify or alkalinize the cytosol, depending on the cell type and tissue of origin. BALB/c 3T3 mouse embryo cells are employed in the present study because they are used extensively in investigations of mammalian cell proliferation. Since these cells are of indefinite origin, there is no way to predict which HCO3- transporting system is operable in these cells and, hence, what effect HCO3- will have on the pHin and the response of pHin to mitogens. In the present article, we examine the mechanism and effect of HCO3(-)-based pHin regulation. Our results indicate that HCO3(-)-dependent pHin regulation in BALB/c 3T3 cells occurs via Na-HCO3/HCl exchange which raises pHin under physiological conditions. This activity can raise the pHin to above the set point of the activated Na+/H+ exchanger, consequently attenuating the mitogen-induced Na+/H+ exchange-mediated increases in pHin.[1]


WikiGenes - Universities