The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Peripheral repetitive magnetic stimulation induces intracortical inhibition in healthy subjects.

OBJECTIVE: Repetitive magnetic stimulation (rMS) is mainly used in transcranial applications. Only a few works have described its potential peripheral use. The aim of this investigation was to determine if conditioning peripheral (paravertebral) rMS of the cervical nerve roots in a group of healthy subjects induces changes in motor cortical excitability. METHODS: This was measured by means of motor evoked potentials (MEP), motor recruitment curves (RC), intracortical inhibition (ICI) and facilitation, as well as the cortical silent period (CSP) before and after repetitive stimulation. rMS was carried out by applying ten series of stimulation at 120% of resting motor threshold, each lasting 10 seconds with a frequency of 20 Hz. The nerve roots (C7/C8) of the right hand innervating the target muscles (the first dorsal interosseous) were systematically stimulated. RESULTS: This conditioning rMS caused a significantly longer CSP (p=0.001), increased MEP amplitudes (with a tendency to significance of p=0.06) and raised ICI (p<0.05). These changes were absent on the contralateral side, as well as in the course of RC. In conclusion, previously published results that described a prolonged CSP and increased MEP amplitudes led us to speculate that conditioning peripheral rMS is, like electrical stimulation, capable of influencing motor cortical excitability. SIGNIFICANCE: rMS might therefore be used in rehabilitative strategies for spasticity, pain or central paresis.[1]


WikiGenes - Universities