The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Evoked Potentials, Motor

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Evoked Potentials, Motor


Psychiatry related information on Evoked Potentials, Motor

  • Motor thresholds were higher in SWS awakenings, with no differences between REM awakenings and wakefulness, while motor evoked potential amplitude to unconditioned stimuli decreased upon REM awakening as compared to the other conditions [6].

High impact information on Evoked Potentials, Motor

  • The ratio of the motor-evoked potential amplitude before and after IPAS in PD-off patients increased after dopamine replacement [7].
  • During this movement, motor-evoked potential amplitudes from the little finger muscle were significantly suppressed in healthy subjects but enhanced in dystonia patients [8].
  • Cirrhotic patients exhibited increased T2 signal and several functional abnormalities along the cortico-spinal tract (increased central motor conduction time, increased motor cortical threshold, and decreased motor-evoked potential amplitude) [9].
  • In two control sessions without drug application, INB plus rTMS increased the motor-evoked potential (MEP) size and decreased intracortical inhibition (ICI) measured with single- and paired-pulse TMS in the biceps brachii muscle proximal to INB [10].
  • SCA1 was characterized by markedly prolonged peripheral and central motor conduction times in motor evoked potentials [11].

Chemical compound and disease context of Evoked Potentials, Motor


Biological context of Evoked Potentials, Motor


Anatomical context of Evoked Potentials, Motor


Associations of Evoked Potentials, Motor with chemical compounds


Gene context of Evoked Potentials, Motor

  • These particularities, as well as frequent abnormal motor evoked potentials, could help identify patients to be screened for atlastin1 gene mutations [28].
  • METHODS: The hNPC-TERT cells had been transplanted into the injured spinal cord and the functional recovery of the rats with spinal cord contusion injury was evaluated through BBB locomotor scale and Motor Evoked Potentials [29].
  • Motor evoked potentials (MEPs) were used to measure central motor conduction time (CMCT) and the triple stimulation technique (TST) was applied to assess conduction deficits [30].
  • However, transcranial magnetic motor-evoked potential (tcMMEP) assessment revealed no significant difference in onset latency and amplitude between the GDNF- and vehicle-infused groups [31].
  • RESULTS: Resting motor threshold (RMT), amplitudes of motor evoked potentials (MEP) and cSP were similar in both groups whereas iSP-latencies were significantly longer (p<0.05) and their duration shorter (p<0.01) in the ADHD group [32].

Analytical, diagnostic and therapeutic context of Evoked Potentials, Motor


  1. The relationship between evoked potentials and measurements of S-100 protein in cerebrospinal fluid during and after thoracoabdominal aortic aneurysm surgery. van Dongen, E.P., ter Beek, H.T., Schepens, M.A., Morshuis, W.J., Haas, F.J., de Boer, A., Boezeman, E.H., Aarts, L.P. J. Vasc. Surg. (1999) [Pubmed]
  2. Influence of propofol concentrations on multipulse transcranial motor evoked potentials. Nathan, N., Tabaraud, F., Lacroix, F., Mouliès, D., Viviand, X., Lansade, A., Terrier, G., Feiss, P. British journal of anaesthesia. (2003) [Pubmed]
  3. Effect of nitrous oxide on myogenic motor evoked potentials during hypothermia in rabbits anaesthetized with ketamine/fentanyl/propofol. Kakimoto, M., Kawaguchi, M., Sakamoto, T., Inoue, S., Takahashi, M., Furuya, H. British journal of anaesthesia. (2002) [Pubmed]
  4. A study of prognostic predictors of supratentorial haematomas. Misra, U.K., Kalita, J., Srivastava, M., Mandal, S.K. J. Neurol. (1996) [Pubmed]
  5. The effects of 4-aminopyridine on motor evoked potentials in multiple sclerosis. Fujihara, K., Miyoshi, T. J. Neurol. Sci. (1998) [Pubmed]
  6. Intracortical inhibition and facilitation upon awakening from different sleep stages: a transcranial magnetic stimulation study. De Gennaro, L., Bertini, M., Ferrara, M., Curcio, G., Cristiani, R., Romei, V., Fratello, F., Pauri, F., Rossini, P.M. Eur. J. Neurosci. (2004) [Pubmed]
  7. Altered plasticity of the human motor cortex in Parkinson's disease. Ueki, Y., Mima, T., Kotb, M.A., Sawada, H., Saiki, H., Ikeda, A., Begum, T., Reza, F., Nagamine, T., Fukuyama, H. Ann. Neurol. (2006) [Pubmed]
  8. Disturbed surround inhibition in focal hand dystonia. Sohn, Y.H., Hallett, M. Ann. Neurol. (2004) [Pubmed]
  9. T2 hyperintensity along the cortico-spinal tract in cirrhosis relates to functional abnormalities. Córdoba, J., Raguer, N., Flavià, M., Vargas, V., Jacas, C., Alonso, J., Rovira, A. Hepatology (2003) [Pubmed]
  10. Mechanisms of deafferentation-induced plasticity in human motor cortex. Ziemann, U., Hallett, M., Cohen, L.G. J. Neurosci. (1998) [Pubmed]
  11. Autosomal dominant cerebellar ataxia: phenotypic differences in genetically defined subtypes? Schöls, L., Amoiridis, G., Büttner, T., Przuntek, H., Epplen, J.T., Riess, O. Ann. Neurol. (1997) [Pubmed]
  12. Effects of halothane on motor evoked potential recorded in the extradural space. Loughnan, B.A., Anderson, S.K., Hetreed, M.A., Weston, P.F., Boyd, S.G., Hall, G.M. British journal of anaesthesia. (1989) [Pubmed]
  13. Diagnostic value of paraclinical tests in multiple sclerosis: relative sensitivities and specificities for reclassification according to the Poser committee criteria. Beer, S., Rösler, K.M., Hess, C.W. J. Neurol. Neurosurg. Psychiatr. (1995) [Pubmed]
  14. Surgical monitoring of motor pathways. Burke, D., Hicks, R.G. Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society. (1998) [Pubmed]
  15. Further insights into post-exercise effects on H-reflexes and motor evoked potentials of the flexor carpi radialis muscles. Kato, T., Takeda, Y., Tsuji, T., Kasai, T. Motor control. (2003) [Pubmed]
  16. Post-exercise facilitation and depression of motor evoked potentials to transcranial magnetic stimulation: a study in multiple sclerosis. Perretti, A., Balbi, P., Orefice, G., Trojano, L., Marcantonio, L., Brescia-Morra, V., Ascione, S., Manganelli, F., Conte, G., Santoro, L. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. (2004) [Pubmed]
  17. Effects of methylprednisolone on the neural conduction of the motor evoked potentials in spinal cord injured rats. Lee, B.H., Lee, K.H., Yoon, d.o. .H., Kim, U.J., Hwang, Y.S., Park, S.K., Choi, J.U., Park, Y.G. J. Korean Med. Sci. (2005) [Pubmed]
  18. Magnetic motor-evoked potentials in epilepsy: effects of the disease and of anticonvulsant medication. Hufnagel, A., Elger, C.E., Marx, W., Ising, A. Ann. Neurol. (1990) [Pubmed]
  19. Measurement of voluntary activation of fresh and fatigued human muscles using transcranial magnetic stimulation. Todd, G., Taylor, J.L., Gandevia, S.C. J. Physiol. (Lond.) (2003) [Pubmed]
  20. Effects of 4-aminopyridine on motor evoked potentials in patients with spinal cord injury: a double-blinded, placebo-controlled crossover trial. Wolfe, D.L., Hayes, K.C., Hsieh, J.T., Potter, P.J. J. Neurotrauma (2001) [Pubmed]
  21. Isoflurane-induced attenuation of motor evoked potentials caused by electrical motor cortex stimulation during surgery. Calancie, B., Klose, K.J., Baier, S., Green, B.A. J. Neurosurg. (1991) [Pubmed]
  22. Corticospinal excitability changes following prolonged muscle tendon vibration. Steyvers, M., Levin, O., Van Baelen, M., Swinnen, S.P. Neuroreport (2003) [Pubmed]
  23. Abnormal cortical motor excitability in dystonia. Ikoma, K., Samii, A., Mercuri, B., Wassermann, E.M., Hallett, M. Neurology (1996) [Pubmed]
  24. Phenytoin does not influence postexercise facilitation of motor evoked potentials. Samii, A., Chen, R., Wassermann, E.M., Hallett, M. Neurology (1998) [Pubmed]
  25. Pharmacologic reversal of cortical hyperexcitability in patients with ALS. Caramia, M.D., Palmieri, M.G., Desiato, M.T., Iani, C., Scalise, A., Telera, S., Bernardi, G. Neurology (2000) [Pubmed]
  26. Comparison of isoflurane effects on motor evoked potential and F wave. Zhou, H.H., Zhu, C. Anesthesiology (2000) [Pubmed]
  27. Effect of vecuronium-induced neuromuscular blockade on cortical motor evoked potentials. Sloan, T.B., Erian, R. Anesthesiology (1993) [Pubmed]
  28. Atlastin1 mutations are frequent in young-onset autosomal dominant spastic paraplegia. Dürr, A., Camuzat, A., Colin, E., Tallaksen, C., Hannequin, D., Coutinho, P., Fontaine, B., Rossi, A., Gil, R., Rousselle, C., Ruberg, M., Stevanin, G., Brice, A. Arch. Neurol. (2004) [Pubmed]
  29. Improving recovery of spinal cord-injured rats by telomerase-driven human neural progenitor cells. Xu, G., Li, X., Bai, Y., Bai, J., Li, L., Shen, L. Restorative neurology and neuroscience. (2004) [Pubmed]
  30. Quantification of central motor conduction deficits in multiple sclerosis patients before and after treatment of acute exacerbation by methylprednisolone. Humm, A.M., Z'Graggen, W.J., Bühler, R., Magistris, M.R., Rösler, K.M. J. Neurol. Neurosurg. Psychiatr. (2006) [Pubmed]
  31. A neuroprotective role of glial cell line-derived neurotrophic factor following moderate spinal cord contusion injury. Iannotti, C., Ping Zhang, Y., Shields, C.B., Han, Y., Burke, D.A., Xu, X.M. Exp. Neurol. (2004) [Pubmed]
  32. Disturbed transcallosally mediated motor inhibition in children with attention deficit hyperactivity disorder (ADHD). Buchmann, J., Wolters, A., Haessler, F., Bohne, S., Nordbeck, R., Kunesch, E. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. (2003) [Pubmed]
  33. Is the cutaneous silent period an opiate-sensitive nociceptive reflex? Inghilleri, M., Conte, A., Frasca, V., Berardelli, A., Manfredi, M., Cruccu, G. Muscle Nerve (2002) [Pubmed]
  34. Depression of I waves in corticospinal volleys by sevoflurane, thiopental, and propofol. Woodforth, I.J., Hicks, R.G., Crawford, M.R., Stephen, J.P., Burke, D. Anesth. Analg. (1999) [Pubmed]
  35. Noninvasive intraoperative monitoring of motor evoked potentials under propofol anesthesia: effects of spinal surgery on the amplitude and latency of motor evoked potentials. Jellinek, D., Jewkes, D., Symon, L. Neurosurgery (1991) [Pubmed]
  36. Depressive effect of isoflurane on motor evoked potentials in the Nubian goat. Andel, H., Bayer, G.S., Ciovica, R., Monsivais, J., Basco, M., Zimpfer, M., Turkof, E. Canadian journal of anaesthesia = Journal canadien d'anesthésie. (2000) [Pubmed]
  37. Decreased cortical excitability during motor imagery after disuse of an upper limb in humans. Kaneko, F., Murakami, T., Onari, K., Kurumadani, H., Kawaguchi, K. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. (2003) [Pubmed]
WikiGenes - Universities