Xanthine oxidase-dependent ROS production mediates vitamin A pro-oxidant effects in cultured Sertoli cells.
Several studies have suggested that vitamin A (retinol, ROH) presents pro-oxidant properties in biological systems. Recent studies point out that xantine oxidase, a ROS-generating enzyme, catalyses ROH oxidation to RA in vitro. These works stimulated the authors to investigate whether xanthine oxidase could be involved on the ROH pro-oxidative effects reported in cultured Sertoli cells. In vitro, it was demonstrate that xanthine oxidase generates superoxide in the presence of ROH as assessed by superoxide mediated-NBT reduction. Superoxide production is potentiated in the presence of NADH and inhibited by allopurinol. In Sertoli cells, ROH treatment increased xanthine oxidase activity and inhibition of the enzyme with allopurinol attenuated ROH-induced ROS production, protein damage and cytotoxicity. Moreover, inhibition of ROH oxidation to RA by retinaldehyde dehydrogenase inhibitor potentiated both xanthine oxidase-dependent ROS production and cell damage in ROH-treated cells. The data show that xanthine oxidase may play a role on vitamin A pro-oxidant effects.[1]References
- Xanthine oxidase-dependent ROS production mediates vitamin A pro-oxidant effects in cultured Sertoli cells. Zanotto-Filho, A., Schröder, R., Moreira, J.C. Free Radic. Res. (2008) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg