Inhibition of recA-mediated strand exchange by adducts of azacytosine-containing DNA and the EcoRII methylase.
Wild type Escherichia coli cells containing elevated levels of DNA (cytosine-5)methyltransferases have increased sensitivity to the toxic effects of 5-azacytidine. The methyltransferases form tight binding complexes with azacytosine in DNA which could interfere with the recA recBCD repair pathway which is largely responsible for cell survival after treatment with the drug. We therefore determined if these complexes interfered with recA-mediated strand exchange in vitro. 32P-Labeled DNA fragments containing a single EcoRII site, with cytosine in the (-) strand replaced by 5-azacytosine, were prepared. We investigated the effect of the EcoRII methyltransferase on recA-mediated strand exchange with homologous M13 DNA by electrophoresis in agarose gels. In the absence of the methylase the rate and extent of strand exchange of azacytosine-containing DNA is the same as control DNA. In the presence of the methyltransferase strand exchange is inhibited, but some incorporation of duplexes into recA-single-stranded DNA (ssDNA) complexes still occurs. The formation of these complexes is dependent on the length of the fragment 3' to the methylase binding site on the strand complementary to the ssDNA. The greater the length the greater the number of complexes that form. S-Adenosyl-L-methionine, which enhances binding of the methyltransferase to azacytosine-containing DNA, causes an increase in the inhibition of strand exchange and an increase in the number of inactive complexes formed. The complexes can be dissociated with guanidinium chloride which denatures the methyltransferase and leads to release of the (+) strand. The (-) strand remains associated with the ssDNA. This result implies that a plectonemic joint is formed between recA-ssDNA complexes and azacytosine-containing DNA-methyltransferase complexes. However, branch migration in these complexes is inhibited. Denaturation of the methyltransferase allows branch migration to proceed to completion, releasing the (+) strand.[1]References
- Inhibition of recA-mediated strand exchange by adducts of azacytosine-containing DNA and the EcoRII methylase. Huang, Y.C., Friedman, S. J. Biol. Chem. (1991) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg