The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Response to heat shock of gene 1, a Drosophila melanogaster small heat shock gene, is developmentally regulated.

The expression of gene 1, a member of the small heat shock gene family from the Drosophila melanogaster chromosomal locus 67B was studied. In contrast to the other heat shock genes, the response of gene 1 to stress was modulated during development. In the absence of stress, gene 1 was expressed at the beginning of pupation, and at a very low level in adult males. Expression of gene 1 was substantially increased by heat shock in pupae, but was one to two orders of magnitude lower in adults or in embryos. Under the same conditions, hsp70 or hsp26 were induced to similar levels in all stages. This developmental effect could be mimicked in cultured Drosophila cells: expression of gene 1 was stimulated by heat shock in the presence, but not in the absence, of the moulting hormone ecdysterone, while the level of expression of hsp26 and hsp70 in response to heat shock was independent of the presence of the hormone. Thus, the presence and activity of the heat shock transcription factor are not sufficient for the maximal response of gene 1 to stress. These results suggest that the heat shock activator protein requires additional factors, which are developmentally regulated, to activate transcription of gene 1. Furthermore, S1 nuclease mapping analysis revealed several gene 1 mRNA species, which are generated by the use of alternative polyadenylation sites and by the use of differentially regulated transcriptional initiation sites.[1]

References

 
WikiGenes - Universities