The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Characterization of the mutation responsible for aspartylglucosaminuria in three Finnish patients. Amino acid substitution Cys163----Ser abolishes the activity of lysosomal glycosylasparaginase and its conversion into subunits.

The mutation that causes a deficiency of the lysosomal amidase, glycosylasparaginase, has been characterized in fibroblasts from three Finnish patients diagnosed with aspartylglucosaminuria (AGU). The polymerase chain reaction was used to amplify the glycosylasparaginase protein coding sequence from the three AGU patients in order to compare them to the normal sequence from a full-length human placenta cDNA clone HPAsn.6 (Fisher, K.J., Tollersrud, O.K., and Aronson, N.N., Jr. (1990) FEBS Lett. 269, 440-444). Two base changes were found to be common to all three Finnish AGU patients, a G482----A transition that results in an Arg161----Gln substitution and a G488----C transversion that causes Cys163----Ser. Detection of both point mutations from PCR-amplified cDNA or genomic DNA was facilitated by their creation of new endonuclease restriction sites. Expression studies in COS-1 cells revealed only the Cys163----Ser mutation caused a deficiency of glycosylasparaginase activity. This same substitution also prevented the normal posttranslational processing of the precursor glycosylasparaginase polypeptide into its alpha and beta subunits. Cell-free expression of the single-chain glycosylasparaginase precusor did not produce an active enzyme, suggesting that post-translational generation of subunits may be required for catalytic activity.[1]

References

 
WikiGenes - Universities