The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

A novel biotransformation process of 4'-demethylepipodophyllotoxin to 4'-demethylepipodophyllic acid by Bacillus fusiformis CICC 20463, Part II: process optimization.

This work optimized the novel biotransformation process of 4'-demethylepipodophyllotoxin (DMEP) into 4'-demethylepipodophyllic acid (DMEPA) by Bacillus fusiformis CICC 20463. Firstly, the biotransformation process was significantly affected by medium composition. 5 g/L of yeast extract and 10 g/L of peptone were optimal for DMEPA production (i.e., 2.81 + or - 0.21 mg/L), while not beneficial for the cell growth of B. fusiformis. This indicated that the biosynthesis of DMEPA was not corresponded well to the cell growth of B. fusiformis. 40 g/L of sucrose was optimal for DMEPA production (i.e., 2.94 + or - 0.17 mg/L), and 3 g/L of NaCl was the best for DMEPA production (i.e., 4.10 + or - 0.18 mg/L). Secondly, the production of DMEPA was significantly enhanced by the control of substrate concentration and culture pH. 100 mg/L of substrate was optimal for DMEPA production (i.e., 6.47 + or - 0.35 mg/L), and DMEPA concentration was enhanced to 38.78 mg/L by controlling culture pH at 9.0 in the stirred-tank bioreactors. The fundamental information obtained in this study provides a simple and efficient way to produce DMEPA by biotransformation.[1]

References

 
WikiGenes - Universities