Clearance and phosphorylation of alpha-synuclein are inhibited in methionine sulfoxide reductase a null yeast cells.
Aggregated alpha-synuclein and the point mutations Ala30Pro and Ala53Thr of alpha-synuclein are associated with Parkinson's disease. The physiological roles of alpha-synuclein and methionine oxidation of the alpha-synuclein protein structure and function are not fully understood. Methionine sulfoxide reductase A (MsrA) reduces methionine sulfoxide residues and functions as an antioxidant. To monitor the effect of methionine oxidation to alpha-synuclein on basic cellular processes, alpha-synucleins were expressed in msrA null mutant and wild-type yeast cells. Protein degradation was inhibited in the alpha-synuclein-expressing msrA null mutant cells compared to alpha-synuclein-expressing wild-type cells. Increased inhibition of degradation and elevated accumulations of fibrillated proteins were observed in SynA30P-expressing msrA null mutant cells. Additionally, methionine oxidation inhibited alpha-synuclein phosphorylation in yeast cells and in vitro by casein kinase 2. Thus, a compromised MsrA function combined with alpha-synuclein overexpression may promote processes leading to synucleinopathies.[1]References
- Clearance and phosphorylation of alpha-synuclein are inhibited in methionine sulfoxide reductase a null yeast cells. Oien, D.B., Shinogle, H.E., Moore, D.S., Moskovitz, J. J. Mol. Neurosci. (2009) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg