The neural-glial purinergic receptor ensemble in chronic pain states.
Chronic pain is characterized by enhanced sensory neurotransmission that underlies increased sensitivity to noxious stimuli and the perception of non-noxious stimuli as painful. Evidence from neurophysiological and pharmacological studies demonstrates that ATP produces pain by directly enhancing neuronal excitability via the activation of specific ligand-gated ion channels, the P2X3 and P2X2/3 receptors. In addition, ATP activates CNS glial cells (e.g. microglia) in response to persistent nociceptive stimulation. This latter effect involves several distinct receptor-mediated signaling pathways linked to the P2X4, P2X7 and P2Y(12) receptors. This review summarizes new data that places these purinergic signaling events in a mechanistic context that illustrates the ability of ATP to initiate and maintain states of heightened sensory neuron excitability associated with persistent pain.[1]References
- The neural-glial purinergic receptor ensemble in chronic pain states. Jarvis, M.F. Trends Neurosci. (2010) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg