The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Synaptic Transmission

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Synaptic Transmission

 

Psychiatry related information on Synaptic Transmission

 

High impact information on Synaptic Transmission

 

Chemical compound and disease context of Synaptic Transmission

 

Biological context of Synaptic Transmission

 

Anatomical context of Synaptic Transmission

 

Associations of Synaptic Transmission with chemical compounds

  • AMPA-type glutamate receptors (AMPA-Rs) mediate a majority of excitatory synaptic transmission in the brain [31].
  • Furthermore, several lines of evidence suggest that proline may serve as a modulator of synaptic transmission in the mammalian brain [32].
  • Functional analysis of the STM7 recombinant protein corresponding to the reported 2.7-kilobase transcript has demonstrated PtdlnsP 5-kinase activity, supporting the idea that the disease is caused by a defect in the phosphoinositide pathway, possibly affecting vesicular trafficking or synaptic transmission [33].
  • The contribution of AMPA and NMDA receptors to synaptic transmission and plasticity is well established [28].
  • Opioids inhibit GABA-mediated (GABAergic) synaptic transmission in the PAG and other brain regions by reducing the probability of presynaptic neurotransmitter release, but the mechanisms involved remain uncertain [34].
 

Gene context of Synaptic Transmission

 

Analytical, diagnostic and therapeutic context of Synaptic Transmission

References

  1. Intracellular calcium ions decrease the affinity of the GABA receptor. Inoue, M., Oomura, Y., Yakushiji, T., Akaike, N. Nature (1986) [Pubmed]
  2. Higher autoantibody levels and recognition of a linear NH2-terminal epitope in the autoantigen GAD65, distinguish stiff-man syndrome from insulin-dependent diabetes mellitus. Kim, J., Namchuk, M., Bugawan, T., Fu, Q., Jaffe, M., Shi, Y., Aanstoot, H.J., Turck, C.W., Erlich, H., Lennon, V., Baekkeskov, S. J. Exp. Med. (1994) [Pubmed]
  3. A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids. Fink, M., Lesage, F., Duprat, F., Heurteaux, C., Reyes, R., Fosset, M., Lazdunski, M. EMBO J. (1998) [Pubmed]
  4. Neurogenic versus vascular mechanisms of sumatriptan and ergot alkaloids in migraine. Moskowitz, M.A. Trends Pharmacol. Sci. (1992) [Pubmed]
  5. Glutamate and the pathophysiology of hypoxic--ischemic brain damage. Rothman, S.M., Olney, J.W. Ann. Neurol. (1986) [Pubmed]
  6. Epileptiform activity in rat hippocampus strengthens excitatory synapses. Abegg, M.H., Savic, N., Ehrengruber, M.U., McKinney, R.A., Gähwiler, B.H. J. Physiol. (Lond.) (2004) [Pubmed]
  7. Lamotrigine reduces spontaneous and evoked GABAA receptor-mediated synaptic transmission in the basolateral amygdala: implications for its effects in seizure and affective disorders. Braga, M.F., Aroniadou-Anderjaska, V., Post, R.M., Li, H. Neuropharmacology (2002) [Pubmed]
  8. Motilin--an update. Fox, J.E. Life Sci. (1984) [Pubmed]
  9. Calpain inhibitors, a treatment for Alzheimer's disease: position paper. Battaglia, F., Trinchese, F., Liu, S., Walter, S., Nixon, R.A., Arancio, O. J. Mol. Neurosci. (2003) [Pubmed]
  10. Electroconvulsive therapy as an anticonvulsant: a possible role of neuropeptide Y (NPY). Bolwig, T.G., Woldbye, D.P., Mikkelsen, J.D. The journal of ECT. (1999) [Pubmed]
  11. An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Beaulieu, J.M., Sotnikova, T.D., Marion, S., Lefkowitz, R.J., Gainetdinov, R.R., Caron, M.G. Cell (2005) [Pubmed]
  12. Drosophila DPM neurons form a delayed and branch-specific memory trace after olfactory classical conditioning. Yu, D., Keene, A.C., Srivatsan, A., Waddell, S., Davis, R.L. Cell (2005) [Pubmed]
  13. Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Graf, E.R., Zhang, X., Jin, S.X., Linhoff, M.W., Craig, A.M. Cell (2004) [Pubmed]
  14. Independent regulation of synaptic size and activity by the anaphase-promoting complex. van Roessel, P., Elliott, D.A., Robinson, I.M., Prokop, A., Brand, A.H. Cell (2004) [Pubmed]
  15. Mutations in Rab3a alter circadian period and homeostatic response to sleep loss in the mouse. Kapfhamer, D., Valladares, O., Sun, Y., Nolan, P.M., Rux, J.J., Arnold, S.E., Veasey, S.C., Bućan, M. Nat. Genet. (2002) [Pubmed]
  16. A novel GABA receptor modulates synaptic transmission from bipolar to ganglion and amacrine cells in the tiger salamander retina. Lukasiewicz, P.D., Werblin, F.S. J. Neurosci. (1994) [Pubmed]
  17. Omega-conotoxin sensitivity and presynaptic inhibition of glutamatergic sensory neurotransmission in vitro. Gruner, W., Silva, L.R. J. Neurosci. (1994) [Pubmed]
  18. Direct measurement of adenosine release during hypoxia in the CA1 region of the rat hippocampal slice. Dale, N., Pearson, T., Frenguelli, B.G. J. Physiol. (Lond.) (2000) [Pubmed]
  19. Cerebral synaptic transmission during anoxia is protected by creatine. Whittingham, T.S., Lipton, P. J. Neurochem. (1981) [Pubmed]
  20. Neuronal damage after moderate hypoxia and erythropoietin. Weber, A., Dzietko, M., Berns, M., Felderhoff-Mueser, U., Heinemann, U., Maier, R.F., Obladen, M., Ikonomidou, C., Bührer, C. Neurobiol. Dis. (2005) [Pubmed]
  21. Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein. Migaud, M., Charlesworth, P., Dempster, M., Webster, L.C., Watabe, A.M., Makhinson, M., He, Y., Ramsay, M.F., Morris, R.G., Morrison, J.H., O'Dell, T.J., Grant, S.G. Nature (1998) [Pubmed]
  22. Contributions of two types of calcium channels to synaptic transmission and plasticity. Edmonds, B., Klein, M., Dale, N., Kandel, E.R. Science (1990) [Pubmed]
  23. Glutamate receptors of the kainate type and synaptic transmission. Lerma, J., Morales, M., Vicente, M.A., Herreras, O. Trends Neurosci. (1997) [Pubmed]
  24. Tyrosine phosphatase STEP is a tonic brake on induction of long-term potentiation. Pelkey, K.A., Askalan, R., Paul, S., Kalia, L.V., Nguyen, T.H., Pitcher, G.M., Salter, M.W., Lombroso, P.J. Neuron (2002) [Pubmed]
  25. Regulation of AMPA receptor-mediated synaptic transmission by clathrin-dependent receptor internalization. Man, H.Y., Lin, J.W., Ju, W.H., Ahmadian, G., Liu, L., Becker, L.E., Sheng, M., Wang, Y.T. Neuron (2000) [Pubmed]
  26. Developmentally regulated postsynaptic localization of a metabotropic glutamate receptor in rat rod bipolar cells. Nomura, A., Shigemoto, R., Nakamura, Y., Okamoto, N., Mizuno, N., Nakanishi, S. Cell (1994) [Pubmed]
  27. Frequency-dependent involvement of NMDA receptors in the hippocampus: a novel synaptic mechanism. Herron, C.E., Lester, R.A., Coan, E.J., Collingridge, G.L. Nature (1986) [Pubmed]
  28. Kainate-receptor-mediated sensory synaptic transmission in mammalian spinal cord. Li, P., Wilding, T.J., Kim, S.J., Calejesan, A.A., Huettner, J.E., Zhuo, M. Nature (1999) [Pubmed]
  29. NMDA receptors of dentate gyrus granule cells participate in synaptic transmission following kindling. Mody, I., Heinemann, U. Nature (1987) [Pubmed]
  30. The C(2)B Ca(2+)-binding motif of synaptotagmin is required for synaptic transmission in vivo. Mackler, J.M., Drummond, J.A., Loewen, C.A., Robinson, I.M., Reist, N.E. Nature (2002) [Pubmed]
  31. Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Shi, S., Hayashi, Y., Esteban, J.A., Malinow, R. Cell (2001) [Pubmed]
  32. The gene encoding proline dehydrogenase modulates sensorimotor gating in mice. Gogos, J.A., Santha, M., Takacs, Z., Beck, K.D., Luine, V., Lucas, L.R., Nadler, J.V., Karayiorgou, M. Nat. Genet. (1999) [Pubmed]
  33. The Friedreich's ataxia gene encodes a novel phosphatidylinositol-4- phosphate 5-kinase. Carvajal, J.J., Pook, M.A., dos Santos, M., Doudney, K., Hillermann, R., Minogue, S., Williamson, R., Hsuan, J.J., Chamberlain, S. Nat. Genet. (1996) [Pubmed]
  34. How opioids inhibit GABA-mediated neurotransmission. Vaughan, C.W., Ingram, S.L., Connor, M.A., Christie, M.J. Nature (1997) [Pubmed]
  35. Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in GluR delta 2 mutant mice. Kashiwabuchi, N., Ikeda, K., Araki, K., Hirano, T., Shibuki, K., Takayama, C., Inoue, Y., Kutsuwada, T., Yagi, T., Kang, Y. Cell (1995) [Pubmed]
  36. Synaptotagmins I and IV promote transmitter release independently of Ca(2+) binding in the C(2)A domain. Robinson, I.M., Ranjan, R., Schwarz, T.L. Nature (2002) [Pubmed]
  37. Differential roles of NR2A- and NR2B-containing NMDA receptors in Ras-ERK signaling and AMPA receptor trafficking. Kim, M.J., Dunah, A.W., Wang, Y.T., Sheng, M. Neuron (2005) [Pubmed]
  38. APP processing and synaptic plasticity in presenilin-1 conditional knockout mice. Yu, H., Saura, C.A., Choi, S.Y., Sun, L.D., Yang, X., Handler, M., Kawarabayashi, T., Younkin, L., Fedeles, B., Wilson, M.A., Younkin, S., Kandel, E.R., Kirkwood, A., Shen, J. Neuron (2001) [Pubmed]
  39. Corticotropin-releasing factor requires CRF binding protein to potentiate NMDA receptors via CRF receptor 2 in dopamine neurons. Ungless, M.A., Singh, V., Crowder, T.L., Yaka, R., Ron, D., Bonci, A. Neuron (2003) [Pubmed]
  40. Gbetagamma acts at the C terminus of SNAP-25 to mediate presynaptic inhibition. Gerachshenko, T., Blackmer, T., Yoon, E.J., Bartleson, C., Hamm, H.E., Alford, S. Nat. Neurosci. (2005) [Pubmed]
  41. GABA(A) receptor subtypes: dissecting their pharmacological functions. Rudolph, U., Crestani, F., Möhler, H. Trends Pharmacol. Sci. (2001) [Pubmed]
  42. Noradrenergic inhibition of synaptic transmission between mitral and granule cells in mammalian olfactory bulb cultures. Trombley, P.Q., Shepherd, G.M. J. Neurosci. (1992) [Pubmed]
  43. Anesthetic-induced burst suppression EEG activity requires glutamate-mediated excitatory synaptic transmission. Lukatch, H.S., Kiddoo, C.E., Maciver, M.B. Cereb. Cortex (2005) [Pubmed]
  44. Association of dystrophin-related protein 2 (DRP2) with postsynaptic densities in rat brain. Roberts, R.G., Sheng, M. Mol. Cell. Neurosci. (2000) [Pubmed]
 
WikiGenes - Universities