The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Neuroglia


Psychiatry related information on Neuroglia


High impact information on Neuroglia


Chemical compound and disease context of Neuroglia


Biological context of Neuroglia

  • In ana mutants, quiescent postembryonic central brain and optic lobe neuroblasts enter S phase precociously. ana encodes a novel secreted protein of 474 amino acids that is expressed not in the affected neuroblasts, but rather in a subclass of neighboring glial cells [21].
  • Primary cultures containing CNS glial cells have been shown to respond to beta-adrenergic agonists with an increase in cyclic AMP and, as a result, with an increase in glycogenolysis and have also been shown to respond to a variety of peptides with changes in cyclic AMP [22].
  • Thus, complement activation provides a specific mechanism for recruiting reactive glial cells to the site of the fibrillar amyloid beta-protein plaque, which could lead to inflammatory events, neuronal dysfunction and degeneration [23].
  • Here we searched for neurogenesis in adult macaques by using immunofluorescent triple labeling for the DNA-replication indicator, bromodeoxyuridine (BrdU), and neuronal and glial cell markers [24].
  • DFGF-R1 (breathless), a Drosophila FGF receptor homolog, is required for the migration of tracheal cells and the posterior midline glial cells during embryonic development [25].

Anatomical context of Neuroglia


Associations of Neuroglia with chemical compounds

  • These results demonstrate a non-vesicular mechanism for the release of glutamate from glial cells and neurons [31].
  • Our experiments show that glial cells possess quisqualate- and kainate-receptor channels but lack receptors for NMDA [32].
  • Possible relationship between glial cells, dopamine and the effects of antipsychotic drugs [33].
  • Uptake into glial cells helps to terminate glutamate's neurotransmitter action and to keep its extracellular concentration, [Glu]o, below neurotoxic levels [34].
  • These results suggest that neuropeptides influence glial cells as well as neurones in the CNS and, in the case of somatostatin and substance P, provide further examples of neuropeptides modulating the response to another chemical signal without having a detectable action on their own [22].

Gene context of Neuroglia


Analytical, diagnostic and therapeutic context of Neuroglia


  1. Cerebral ischemia enhances polyamine oxidation: identification of enzymatically formed 3-aminopropanal as an endogenous mediator of neuronal and glial cell death. Ivanova, S., Botchkina, G.I., Al-Abed, Y., Meistrell, M., Batliwalla, F., Dubinsky, J.M., Iadecola, C., Wang, H., Gregersen, P.K., Eaton, J.W., Tracey, K.J. J. Exp. Med. (1998) [Pubmed]
  2. Glioblastoma expression of vitronectin and the alpha v beta 3 integrin. Adhesion mechanism for transformed glial cells. Gladson, C.L., Cheresh, D.A. J. Clin. Invest. (1991) [Pubmed]
  3. Modification of glial-neuronal cell interactions prevents photoreceptor apoptosis during light-induced retinal degeneration. Harada, T., Harada, C., Nakayama, N., Okuyama, S., Yoshida, K., Kohsaka, S., Matsuda, H., Wada, K. Neuron (2000) [Pubmed]
  4. TAR-independent transactivation by Tat in cells derived from the CNS: a novel mechanism of HIV-1 gene regulation. Taylor, J.P., Pomerantz, R., Bagasra, O., Chowdhury, M., Rappaport, J., Khalili, K., Amini, S. EMBO J. (1992) [Pubmed]
  5. Retinoic acid induces embryonal carcinoma cells to differentiate into neurons and glial cells. Jones-Villeneuve, E.M., McBurney, M.W., Rogers, K.A., Kalnins, V.I. J. Cell Biol. (1982) [Pubmed]
  6. Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Cotter, D., Mackay, D., Landau, S., Kerwin, R., Everall, I. Arch. Gen. Psychiatry (2001) [Pubmed]
  7. Quiescent and cycling cell compartments in the senescent and Alzheimer-diseased human brain. Schipper, H.M., Liang, J.J., Wang, E. Neurology (1993) [Pubmed]
  8. Interleukin-1beta activates forebrain glial cells and increases nitric oxide production and cortical glutamate and GABA release in vivo: implications for Alzheimer's disease. Casamenti, F., Prosperi, C., Scali, C., Giovannelli, L., Colivicchi, M.A., Faussone-Pellegrini, M.S., Pepeu, G. Neuroscience (1999) [Pubmed]
  9. Differential expression of phosphorylated translation initiation factor 2 alpha in Alzheimer's disease and Creutzfeldt-Jakob's disease. Ferrer, I. Neuropathol. Appl. Neurobiol. (2002) [Pubmed]
  10. Propentofylline in the treatment of Alzheimer's disease and vascular dementia: a review of phase III trials. Rother, M., Erkinjuntti, T., Roessner, M., Kittner, B., Marcusson, J., Karlsson, I. Dementia and geriatric cognitive disorders. (1998) [Pubmed]
  11. Glial calcium: homeostasis and signaling function. Verkhratsky, A., Orkand, R.K., Kettenmann, H. Physiol. Rev. (1998) [Pubmed]
  12. Extracellular crosstalk: when GDNF meets N-CAM. Zhou, F.Q., Zhong, J., Snider, W.D. Cell (2003) [Pubmed]
  13. The glial cells missing-1 protein is essential for branching morphogenesis in the chorioallantoic placenta. Anson-Cartwright, L., Dawson, K., Holmyard, D., Fisher, S.J., Lazzarini, R.A., Cross, J.C. Nat. Genet. (2000) [Pubmed]
  14. A Drosophila neurexin is required for septate junction and blood-nerve barrier formation and function. Baumgartner, S., Littleton, J.T., Broadie, K., Bhat, M.A., Harbecke, R., Lengyel, J.A., Chiquet-Ehrismann, R., Prokop, A., Bellen, H.J. Cell (1996) [Pubmed]
  15. glial cells missing: a binary switch between neuronal and glial determination in Drosophila. Hosoya, T., Takizawa, K., Nitta, K., Hotta, Y. Cell (1995) [Pubmed]
  16. Pharmacological characterization of endothelin-stimulated phosphoinositide breakdown and cytosolic free Ca2+ rise in rat C6 glioma cells. Lin, W.W., Kiang, J.G., Chuang, D.M. J. Neurosci. (1992) [Pubmed]
  17. Gp-41-mediated astrocyte inducible nitric oxide synthase mRNA expression: involvement of interleukin-1beta production by microglia. Hu, S., Ali, H., Sheng, W.S., Ehrlich, L.C., Peterson, P.K., Chao, C.C. J. Neurosci. (1999) [Pubmed]
  18. Chronic, controlled GDNF infusion promotes structural and functional recovery in advanced parkinsonian monkeys. Grondin, R., Zhang, Z., Yi, A., Cass, W.A., Maswood, N., Andersen, A.H., Elsberry, D.D., Klein, M.C., Gerhardt, G.A., Gash, D.M. Brain (2002) [Pubmed]
  19. Cytokines induce nitric oxide-mediated mtDNA damage and apoptosis in oligodendrocytes. Protective role of targeting 8-oxoguanine glycosylase to mitochondria. Druzhyna, N.M., Musiyenko, S.I., Wilson, G.L., LeDoux, S.P. J. Biol. Chem. (2005) [Pubmed]
  20. Redistribution of glutamate and glutamine in slices of human neocortex exposed to combined hypoxia and glucose deprivation in vitro. Aas, J.E., Berg-Johnsen, J., Hegstad, E., Laake, J.H., Langmoen, I.A., Ottersen, O.P. J. Cereb. Blood Flow Metab. (1993) [Pubmed]
  21. The Drosophila anachronism locus: a glycoprotein secreted by glia inhibits neuroblast proliferation. Ebens, A.J., Garren, H., Cheyette, B.N., Zipursky, S.L. Cell (1993) [Pubmed]
  22. Neuropeptides modulate the beta-adrenergic response of purified astrocytes in vitro. Rougon, G., Noble, M., Mudge, A.W. Nature (1983) [Pubmed]
  23. Aspartate residue 7 in amyloid beta-protein is critical for classical complement pathway activation: implications for Alzheimer's disease pathogenesis. Velazquez, P., Cribbs, D.H., Poulos, T.L., Tenner, A.J. Nat. Med. (1997) [Pubmed]
  24. Cell proliferation without neurogenesis in adult primate neocortex. Kornack, D.R., Rakic, P. Science (2001) [Pubmed]
  25. Elucidation of the role of breathless, a Drosophila FGF receptor homolog, in tracheal cell migration. Reichman-Fried, M., Dickson, B., Hafen, E., Shilo, B.Z. Genes Dev. (1994) [Pubmed]
  26. Electrogenic glutamate uptake is a major current carrier in the membrane of axolotl retinal glial cells. Brew, H., Attwell, D. Nature (1987) [Pubmed]
  27. Glial heterogeneity may define the three-dimensional shape of mouse mesencephalic dopaminergic neurones. Denis-Donini, S., Glowinski, J., Prochiantz, A. Nature (1984) [Pubmed]
  28. Desensitisation of cultured glial cells to epidermal growth factor by receptor down-regulation. Heldin, C.H., Westermark, B., Wasteson, A. Nature (1979) [Pubmed]
  29. A downstream initiation element required for efficient TATA box binding and in vitro function of TFIID. Nakatani, Y., Horikoshi, M., Brenner, M., Yamamoto, T., Besnard, F., Roeder, R.G., Freese, E. Nature (1990) [Pubmed]
  30. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Cravatt, B.F., Giang, D.K., Mayfield, S.P., Boger, D.L., Lerner, R.A., Gilula, N.B. Nature (1996) [Pubmed]
  31. Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake. Szatkowski, M., Barbour, B., Attwell, D. Nature (1990) [Pubmed]
  32. Multiple conductance channels in type-2 cerebellar astrocytes activated by excitatory amino acids. Usowicz, M.M., Gallo, V., Cull-Candy, S.G. Nature (1989) [Pubmed]
  33. Possible relationship between glial cells, dopamine and the effects of antipsychotic drugs. Henn, F.A., Anderson, D.J., Sellström, A. Nature (1977) [Pubmed]
  34. The glial cell glutamate uptake carrier countertransports pH-changing anions. Bouvier, M., Szatkowski, M., Amato, A., Attwell, D. Nature (1992) [Pubmed]
  35. Brain lipid-binding protein is a direct target of Notch signaling in radial glial cells. Anthony, T.E., Mason, H.A., Gridley, T., Fishell, G., Heintz, N. Genes Dev. (2005) [Pubmed]
  36. breathless, a Drosophila FGF receptor homolog, is essential for migration of tracheal and specific midline glial cells. Klämbt, C., Glazer, L., Shilo, B.Z. Genes Dev. (1992) [Pubmed]
  37. Glial cells generate neurons: the role of the transcription factor Pax6. Heins, N., Malatesta, P., Cecconi, F., Nakafuku, M., Tucker, K.L., Hack, M.A., Chapouton, P., Barde, Y.A., Götz, M. Nat. Neurosci. (2002) [Pubmed]
  38. glial cells missing and gcm2 cell autonomously regulate both glial and neuronal development in the visual system of Drosophila. Chotard, C., Leung, W., Salecker, I. Neuron (2005) [Pubmed]
  39. Rescue of the skeletal phenotype in CasR-deficient mice by transfer onto the Gcm2 null background. Tu, Q., Pi, M., Karsenty, G., Simpson, L., Liu, S., Quarles, L.D. J. Clin. Invest. (2003) [Pubmed]
  40. Calcium entry through kainate receptors and resulting potassium-channel blockade in Bergmann glial cells. Müller, T., Möller, T., Berger, T., Schnitzer, J., Kettenmann, H. Science (1992) [Pubmed]
  41. Human nerve growth factor protects common marmosets against autoimmune encephalomyelitis by switching the balance of T helper cell type 1 and 2 cytokines within the central nervous system. Villoslada, P., Hauser, S.L., Bartke, I., Unger, J., Heald, N., Rosenberg, D., Cheung, S.W., Mobley, W.C., Fisher, S., Genain, C.P. J. Exp. Med. (2000) [Pubmed]
  42. Identification of a mammalian H(+)-myo-inositol symporter expressed predominantly in the brain. Uldry, M., Ibberson, M., Horisberger, J.D., Chatton, J.Y., Riederer, B.M., Thorens, B. EMBO J. (2001) [Pubmed]
  43. Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. Shin, J.Y., Fang, Z.H., Yu, Z.X., Wang, C.E., Li, S.H., Li, X.J. J. Cell Biol. (2005) [Pubmed]
WikiGenes - Universities