Alternatively spliced products of the maize P gene encode proteins with homology to the DNA-binding domain of myb-like transcription factors.
The Zea mays P gene has been postulated to regulate the biosynthetic pathway of a flavonoid-derived pigment in certain floral tissues [Styles, E. D. & Ceska, O. (1977) Can. J. Genet. Cytol. 19, 289-302]. We have characterized two P transcripts that are alternatively spliced at their 3' ends. One message of 1802 nucleotides encodes a 43.7-kDa protein with an N-terminal region showing approximately 40% homology to the DNA-binding domain of several members of the myb family of protooncogene proteins. A second message of 945 nucleotides encodes a 17.3-kDa protein that contains most of the myb-homologous domain but differs from the first protein at the C terminus. The deduced P-encoded proteins show an even higher homology (70%) in the myb-homologous domain to the maize regulatory gene C1. Additionally, the P and C1 genes are structurally similar in the sizes and positions of the first and second exons and first intron. We show that P is required for accumulation in the pericarp of transcripts of two genes (A1 and C2) encoding enzymes for flavonoid biosynthesis--genes also regulated by C1 in the aleurone.[1]References
- Alternatively spliced products of the maize P gene encode proteins with homology to the DNA-binding domain of myb-like transcription factors. Grotewold, E., Athma, P., Peterson, T. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg