The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Velutin     5-hydroxy-2-(4-hydroxy-3- methoxy-phenyl)-7...

Synonyms: CHEMBL508292, AG-E-79432, SureCN5804380, AC1NUZ6M, CTK4F6361, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Flavonoid


Psychiatry related information on Flavonoid

  • In fact, differences in flavonoid intake were appreciated mainly between the first group (normal diet) and the other two (flavonoid-rich and supplemented diet), suggesting that dietary modification can be as effective as supplementation [5].
  • Anthropometric indices, physical activity level, types and doses of oral hypoglycemic agents, and the intake of nutrients and flavonoid-rich foodstuffs did not change during the CPJ consumption period [6].
  • 6-Bromo-3'-nitroflavone did not exhibit myorelaxant effects (up to 30 mg/kg, i.p.). Unlike diazepam, this flavonoid produced no anterograde amnesia in a one-trial inhibitory avoidance learning [7].
  • The purpose of this study is to investigate the effects of flavonoid, isolated from aerial parts of Scutellaria baicalensis Georgi (SSF), on memory deficits, neuronal degeneration and abnormal energy metabolism induced by permanent global ischemia in rats [8].
  • We investigated whether flavonoid intake could be associated with a lower incidence of dementia in a cohort of 1367 subjects above 65 years of age (Paquid) [9].

High impact information on Flavonoid


Chemical compound and disease context of Flavonoid


Biological context of Flavonoid

  • The rate of cell death in totally ischemic EMT-6 tumors was shown to be sufficiently rapid to represent a major component of the observed antitumor effect of FAA if the flavonoid acts via inhibition of blood flow [19].
  • MYB.Ph3 binding sites are present in the promoter of flavonoid biosynthetic genes, such as the Petunia chsJ gene, which was transcriptionally activated by MYB.Ph3 in tobacco protoplasts [20].
  • Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression [21].
  • Double mutants with tt12 and other testa pigmentation mutants were constructed, and their phenotypes confirmed that tt12 was affected at the level of the flavonoid biosynthetic pathway [22].
  • To test this hypothesis, we used RNA interference to silence chalcone synthase (CHS), the enzyme that catalyzes the first committed step of the flavonoid pathway, in Medicago truncatula [23].

Anatomical context of Flavonoid

  • We report the functional characterization of a member of the B(S) MADS box gene subfamily, demonstrating its involvement in endothelial cell specification as well as in the increasingly complex genetic control of flavonoid biosynthesis in the Arabidopsis seed coat [24].
  • The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium [22].
  • In situ hybridization localized its transcript in the endothelium layer, as expected from the effect of the tt12 mutation on testa flavonoid pigmentation [22].
  • In the Arabidopsis thaliana mutants tt12 and tt19 devoid of a flavonoid transporter, flavonoids were present in the cytosol in reduced amounts but absent in tapetosomes and were subsequently located on mature pollen. tt4, tt12, and tt19 pollen was more susceptible than wild-type pollen to UV-B irradiation on subsequent germination [25].
  • Studies over the past 30 years have supported a model in which flavonoid metabolism is catalyzed by an enzyme complex localized to the endoplasmic reticulum [Hrazdina, G. & Wagner, G. J. (1985) Arch. Biochem. Biophys. 237, 88-100] [26].

Associations of Flavonoid with other chemical compounds

  • The cDNA fragments from the known flavonoid genes, except chalcone isomerase (chi1), were induced in the CRC-expressing line after hormone induction, whereas only the chalcone synthase (c2) and flavanone/dihydroflavonol reductase (a1) genes were induced in the P-expressing line, as was expected [27].
  • The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light [28].
  • Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes [29].
  • Together, these data establish that TT10 is involved in the oxidative polymerization of flavonoids and functions as a laccase-type flavonoid oxidase [30].
  • We present crystal structures of the UDP flavonoid/triterpene GT UGT71G1 from Medicago truncatula bound to UDP or UDP-glucose [31].

Gene context of Flavonoid


Analytical, diagnostic and therapeutic context of Flavonoid


  1. Mutagenic activity of quercetin and related compounds. Bjeldanes, L.F., Chang, G.W. Science (1977) [Pubmed]
  2. Protective effects of silymarin against photocarcinogenesis in a mouse skin model. Katiyar, S.K., Korman, N.J., Mukhtar, H., Agarwal, R. J. Natl. Cancer Inst. (1997) [Pubmed]
  3. Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Hertog, M.G., Feskens, E.J., Hollman, P.C., Katan, M.B., Kromhout, D. Lancet (1993) [Pubmed]
  4. Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility. van der Meer, I.M., Stam, M.E., van Tunen, A.J., Mol, J.N., Stuitje, A.R. Plant Cell (1992) [Pubmed]
  5. Randomized controlled trial of dietary intervention: association between level of urinary phenolics and anti-mutagenicity. Malaveille, C., Fiorini, L., Bianchini, M., Davico, L., Bertinetti, S., Allegro, G., Hautefeuille, A., Sacerdote, C., Vineis, P. Mutat. Res. (2004) [Pubmed]
  6. Cholesterol-Lowering Effect of Concentrated Pomegranate Juice Consumption in Type II Diabetic Patients with Hyperlipidemia. Esmaillzadeh, A., Tahbaz, F., Gaieni, I., Alavi-Majd, H., Azadbakht, L. International journal for vitamin and nutrition research. Internationale Zeitschrift f??r Vitamin- und Ern??hrungsforschung. Journal international de vitaminologie et de nutrition. (2006) [Pubmed]
  7. Pharmacological characterization of 6-bromo-3'-nitroflavone, a synthetic flavonoid with high affinity for the benzodiazepine receptors. Wolfman, C., Viola, H., Marder, M., Ardenghi, P., Wasowski, C., Schröder, N., Izquierdo, I., Rúveda, E., Paladini, A., Medina, J.H. Pharmacol. Biochem. Behav. (1998) [Pubmed]
  8. Scutellaria flavonoid reduced memory dysfunction and neuronal injury caused by permanent global ischemia in rats. Shang, Y., Cheng, J., Qi, J., Miao, H. Pharmacol. Biochem. Behav. (2005) [Pubmed]
  9. Intake of flavonoids and risk of dementia. Commenges, D., Scotet, V., Renaud, S., Jacqmin-Gadda, H., Barberger-Gateau, P., Dartigues, J.F. Eur. J. Epidemiol. (2000) [Pubmed]
  10. The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset. Grotewold, E., Drummond, B.J., Bowen, B., Peterson, T. Cell (1994) [Pubmed]
  11. Nitrogen fixation. Endocrine disrupters and flavonoid signalling. Fox, J.E., Starcevic, M., Kow, K.Y., Burow, M.E., McLachlan, J.A. Nature (2001) [Pubmed]
  12. Cloning and expression of cytochrome P450 genes controlling flower colour. Holton, T.A., Brugliera, F., Lester, D.R., Tanaka, Y., Hyland, C.D., Menting, J.G., Lu, C.Y., Farcy, E., Stevenson, T.W., Cornish, E.C. Nature (1993) [Pubmed]
  13. Aromatase inhibitors in the treatment of breast cancer. Brueggemeier, R.W., Hackett, J.C., Diaz-Cruz, E.S. Endocr. Rev. (2005) [Pubmed]
  14. Casein kinase II is a selective target of HIV-1 transcriptional inhibitors. Critchfield, J.W., Coligan, J.E., Folks, T.M., Butera, S.T. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  15. Flavone acetic acid directly induces expression of cytokine genes in mouse splenic leukocytes but not in human peripheral blood leukocytes. Futami, H., Eader, L.A., Komschlies, K.L., Bull, R., Gruys, M.E., Ortaldo, J.R., Young, H.A., Wiltrout, R.H. Cancer Res. (1991) [Pubmed]
  16. Inhibition of net HepG2 cell apolipoprotein B secretion by the citrus flavonoid naringenin involves activation of phosphatidylinositol 3-kinase, independent of insulin receptor substrate-1 phosphorylation. Borradaile, N.M., de Dreu, L.E., Huff, M.W. Diabetes (2003) [Pubmed]
  17. Novel CFTR chloride channel activators identified by screening of combinatorial libraries based on flavone and benzoquinolizinium lead compounds. Galietta, L.J., Springsteel, M.F., Eda, M., Niedzinski, E.J., By, K., Haddadin, M.J., Kurth, M.J., Nantz, M.H., Verkman, A.S. J. Biol. Chem. (2001) [Pubmed]
  18. Effects of epicatechin on rat islets of Langerhans. Hii, C.S., Howell, S.L. Diabetes (1984) [Pubmed]
  19. Blood flow failure as a major determinant in the antitumor action of flavone acetic acid. Zwi, L.J., Baguley, B.C., Gavin, J.B., Wilson, W.R. J. Natl. Cancer Inst. (1989) [Pubmed]
  20. Dual DNA binding specificity of a petal epidermis-specific MYB transcription factor (MYB.Ph3) from Petunia hybrida. Solano, R., Nieto, C., Avila, J., Cañas, L., Diaz, I., Paz-Ares, J. EMBO J. (1995) [Pubmed]
  21. Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. van der Krol, A.R., Mur, L.A., Beld, M., Mol, J.N., Stuitje, A.R. Plant Cell (1990) [Pubmed]
  22. The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Debeaujon, I., Peeters, A.J., Léon-Kloosterziel, K.M., Koornneef, M. Plant Cell (2001) [Pubmed]
  23. Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Wasson, A.P., Pellerone, F.I., Mathesius, U. Plant Cell (2006) [Pubmed]
  24. The TRANSPARENT TESTA16 locus encodes the ARABIDOPSIS BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coat. Nesi, N., Debeaujon, I., Jond, C., Stewart, A.J., Jenkins, G.I., Caboche, M., Lepiniec, L. Plant Cell (2002) [Pubmed]
  25. Tapetosomes in brassica tapetum accumulate endoplasmic reticulum-derived flavonoids and alkanes for delivery to the pollen surface. Hsieh, K., Huang, A.H. Plant Cell (2007) [Pubmed]
  26. Interactions among enzymes of the Arabidopsis flavonoid biosynthetic pathway. Burbulis, I.E., Winkel-Shirley, B. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  27. Expression profiling of the maize flavonoid pathway genes controlled by estradiol-inducible transcription factors CRC and P. Bruce, W., Folkerts, O., Garnaat, C., Crasta, O., Roth, B., Bowen, B. Plant Cell (2000) [Pubmed]
  28. The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light. Buer, C.S., Muday, G.K. Plant Cell (2004) [Pubmed]
  29. Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Davuluri, G.R., van Tuinen, A., Fraser, P.D., Manfredonia, A., Newman, R., Burgess, D., Brummell, D.A., King, S.R., Palys, J., Uhlig, J., Bramley, P.M., Pennings, H.M., Bowler, C. Nat. Biotechnol. (2005) [Pubmed]
  30. TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Pourcel, L., Routaboul, J.M., Kerhoas, L., Caboche, M., Lepiniec, L., Debeaujon, I. Plant Cell (2005) [Pubmed]
  31. Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula. Shao, H., He, X., Achnine, L., Blount, J.W., Dixon, R.A., Wang, X. Plant Cell (2005) [Pubmed]
  32. Structural basis for specificity and potency of a flavonoid inhibitor of human CDK2, a cell cycle kinase. De Azevedo, W.F., Mueller-Dieckmann, H.J., Schulze-Gahmen, U., Worland, P.J., Sausville, E., Kim, S.H. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  33. The role of chrysin and the ah receptor in induction of the human UGT1A1 gene in vitro and in transgenic UGT1 mice. Bonzo, J.A., Bélanger, A., Tukey, R.H. Hepatology (2007) [Pubmed]
  34. A flavonoid antioxidant, silymarin, inhibits activation of erbB1 signaling and induces cyclin-dependent kinase inhibitors, G1 arrest, and anticarcinogenic effects in human prostate carcinoma DU145 cells. Zi, X., Grasso, A.W., Kung, H.J., Agarwal, R. Cancer Res. (1998) [Pubmed]
  35. Gastrointestinally distributed UDP-glucuronosyltransferase 1A10, which metabolizes estrogens and nonsteroidal anti-inflammatory drugs, depends upon phosphorylation. Basu, N.K., Kubota, S., Meselhy, M.R., Ciotti, M., Chowdhury, B., Hartori, M., Owens, I.S. J. Biol. Chem. (2004) [Pubmed]
  36. Localization of flavonoid enzymes in Arabidopsis roots. Saslowsky, D., Winkel-Shirley, B. Plant J. (2001) [Pubmed]
  37. Luteolin inhibits vascular endothelial growth factor-induced angiogenesis; inhibition of endothelial cell survival and proliferation by targeting phosphatidylinositol 3'-kinase activity. Bagli, E., Stefaniotou, M., Morbidelli, L., Ziche, M., Psillas, K., Murphy, C., Fotsis, T. Cancer Res. (2004) [Pubmed]
  38. Genetical metabolomics of flavonoid biosynthesis in Populus: a case study. Morreel, K., Goeminne, G., Storme, V., Sterck, L., Ralph, J., Coppieters, W., Breyne, P., Steenackers, M., Georges, M., Messens, E., Boerjan, W. Plant J. (2006) [Pubmed]
  39. Procyanidin dimer B2 [epicatechin-(4beta-8)-epicatechin] in human plasma after the consumption of a flavanol-rich cocoa. Holt, R.R., Lazarus, S.A., Sullards, M.C., Zhu, Q.Y., Schramm, D.D., Hammerstone, J.F., Fraga, C.G., Schmitz, H.H., Keen, C.L. Am. J. Clin. Nutr. (2002) [Pubmed]
  40. Nitric oxide (NO) scavenging and NO protecting effects of quercetin and their biological significance in vascular smooth muscle. López-López, G., Moreno, L., Cogolludo, A., Galisteo, M., Ibarra, M., Duarte, J., Lodi, F., Tamargo, J., Perez-Vizcaino, F. Mol. Pharmacol. (2004) [Pubmed]
  41. Molecular cloning, characterization, and downregulation of an acyltransferase that catalyzes the malonylation of flavonoid and naphthol glucosides in tobacco cells. Taguchi, G., Shitchi, Y., Shirasawa, S., Yamamoto, H., Hayashida, N. Plant J. (2005) [Pubmed]
WikiGenes - Universities