The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Mechanism-based pharmacokinetic-pharmacodynamic modeling of the dopamine d(2) receptor occupancy of olanzapine in rats.

PURPOSE: A mechanism-based PK-PD model was developed to predict the time course of dopamine D(2) receptor occupancy (D(2)RO) in rat striatum following administration of olanzapine, an atypical antipsychotic drug. METHODS: A population approach was utilized to quantify both the pharmacokinetics and pharmacodynamics of olanzapine in rats using the exposure (plasma and brain concentration) and D(2)RO profile obtained experimentally at various doses (0.01-40 mg/kg) administered by different routes. A two-compartment pharmacokinetic model was used to describe the plasma pharmacokinetic profile. A hybrid physiology- and mechanism-based model was developed to characterize the D(2) receptor binding in the striatum and was fitted sequentially to the data. The parameters were estimated using nonlinear mixed-effects modeling . RESULTS: Plasma, brain concentration profiles and time course of D(2)RO were well described by the model; validity of the proposed model is supported by good agreement between estimated association and dissociation rate constants and in vitro values from literature. CONCLUSION: This model includes both receptor binding kinetics and pharmacokinetics as the basis for the prediction of the D(2)RO in rats. Moreover, this modeling framework can be applied to scale the in vitro and preclinical information to clinical receptor occupancy.[1]

References

  1. Mechanism-based pharmacokinetic-pharmacodynamic modeling of the dopamine d(2) receptor occupancy of olanzapine in rats. Johnson, M., Kozielska, M., Pilla Reddy, V., Vermeulen, A., Li, C., Grimwood, S., de Greef, R., Groothuis, G.M., Danhof, M., Proost, J.H. Pharm. Res. (2011) [Pubmed]
 
WikiGenes - Universities