Differential phosphorylation of c-Abl in cell cycle determined by cdc2 kinase and phosphatase activity.
The product of the c-abl proto-oncogene (c-Abl) is phosphorylated on three sites during interphase and seven additional sites during mitosis. Two interphase and all mitotic c-Abl sites are phosphorylated by cdc2 kinase isolated from either interphase or mitotic cells, with the mitotic cdc2 having an 11-fold higher activity. Inhibition of phosphatases with okadaic acid in interphase cells leads to the phosphorylation of c-Abl mitotic sites, indicating that those sites are preferentially dephosphorylated during interphase. The differential phosphorylation of c-Abl in the cell cycle is therefore determined by an equilibrium between cdc2 kinase and protein phosphatase activities. Treatment of interphase cells with okadaic acid leads to a rounded morphology similar to that observed during mitosis.[1]References
- Differential phosphorylation of c-Abl in cell cycle determined by cdc2 kinase and phosphatase activity. Kipreos, E.T., Wang, J.Y. Science (1990) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg