The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The effects of NADPH and 3-hydroxy-3-methylglutaryl-CoA on the thiol/disulfide redox behavior of rat liver microsomal 3-hydroxy-3-methylglutaryl-CoA reductase.

Microsomal 3-hydroxy-3-methylglutaryl-CoA reductase isolated from the livers of rats fed a diet containing cholestyramine (HMGR-C) is oxidized to a protein-SS-protein disulfide via a thermodynamically favorable thiol/disulfide exchange in glutathione redox buffers which approach the normal in vivo redox poise. In the presence of either substrate (NADPH or 3-hydroxy-3-methylglutaryl-CoA), the equilibrium thiol/disulfide redox behavior of HMGR-C is substantially different than that observed in the absence of substrates or in the presence of both substrates. NADPH present during redox equilibrium in a glutathione redox buffer decreases the equilibrium constant for formation of the protein-SS-protein disulfide (Kox,i) from 0.55 +/- 0.07 M to 0.18 +/- 0.02 M and increases the Kox,m for formation of an inactive protein-SS-glutathione mixed disulfide from less than 1 to 6 +/- 1. The presence of 3-hydroxy-3-methylglutaryl-CoA during redox equilibrium has a similar effect, decreasing the Kox,i for protein-SS-protein disulfide formation to 0.10 +/- 0.02 M and increasing the Kox,m for protein-SS-glutathione mixed disulfide formation to 3.8 +/- 0. 9. A three-state model is developed which describes the simultaneous accumulation of protein-SS-protein and protein-SS-glutathione mixed disulfides at redox equilibrium with glutathione redox buffers. Because of the different redox behavior of the free and substrate-liganded forms of the enzyme, addition of 3-hydroxy-3-methylglutaryl-CoA or NADPH to HMGR-C at redox equilibrium results in increased reduction and activation of the enzyme.[1]

References

 
WikiGenes - Universities