The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

NADP(H)     [5-[[[[5-(3-aminocarbonyl-4H- pyridin-1-yl)...

Synonyms: AGN-PC-00IQUU, KST-1A5818, AC1L1ACH, AC1Q5IRF, AR-1A9125, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of NADPH

  • Genetic variants of chronic granulomatous disease: prevalence of deficiencies of two cytosolic components of the NADPH oxidase system [1].
  • Since neuronal nitric oxide synthase and NADPH diaphorase are identical, we used the NADPH diaphorase histochemical reaction to study the distribution of nitric oxide synthase in pyloric tissue from patients with infantile hypertrophic pyloric stenosis [2].
  • The number of myenteric ganglia, total neurons per ganglion, and NADPH diaphorase presumptive inhibitory neurons per ganglion are increased in the proximal and distal colon, but decreased in the distal ileum of all Enx-/- mice [3].
  • In thioredoxin reductase (TrxR) from Escherichia coli, cycles of reduction and reoxidation of the flavin adenine dinucleotide (FAD) cofactor depend on rate-limiting rearrangements of the FAD and NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) domains [4].
  • The NADPH phagocye oxidase and iNOS are both required for host resistance to wild-type Salmonella, but appear to operate principally at different stages of infection [5].

Psychiatry related information on NADPH


High impact information on NADPH


Chemical compound and disease context of NADPH


Biological context of NADPH

  • But the catalytic domain of 11beta-HSD1 faces into the lumen of the endoplasmic reticulum (ER; ref. 6). We hypothesized that endolumenal hexose-6-phosphate dehydrogenase (H6PDH) regenerates NADPH in the ER, thereby influencing directionality of 11beta-HSD1 activity [14].
  • The complex consists of an electron transport chain that has as its substrate cytosolic NADPH and which discharges superoxide into the cavity of the intracellular phagocytic vacuole [20].
  • Reactive oxygen species produced by NADPH oxidase regulate plant cell growth [21].
  • Blocking the activity of the NADPH oxidase with diphenylene iodonium (DPI) inhibits ROS formation and phenocopies Rhd2-. Treatment of rhd2 roots with ROS partly suppresses the mutant phenotype and stimulates the activity of plasma membrane hyperpolarization-activated Ca2+ channels, the predominant root Ca2+ acquisition system [21].
  • Thus this structure provides a structural framework for the NADH- or NADPH-dependent flavoenzyme parts of five distinct enzymes involved in photosynthesis, in the assimilation of inorganic nitrogen and sulfur, in fatty-acid oxidation, in the reduction of methemoglobin, and in the metabolism of many pesticides, drugs, and carcinogens [22].

Anatomical context of NADPH


Associations of NADPH with other chemical compounds

  • Aldose reductase is the first enzyme in the polyol pathway and catalyses the NADPH-dependent reduction of D-glucose to D-sorbitol [26].
  • Purified hemoglobin contained tightly bound squalene and functioned as an NADPH-dependent, ferrihemoprotein reductase [27].
  • The mammalian thioredoxins are a family of small (approximately 12 kDa) redox proteins that undergo NADPH-dependent reduction by thioredoxin reductase and in turn reduce oxidized cysteine groups on proteins [28].
  • In this reaction, the neutrophil particles serve only as a source of O2-. Further, the same changes in kinetics (decrease in apparent Km for NADPH) observed previously when granules from phagocytizing rather than resting cells were employed could be mimicked by varying the rate of O2-generation by the model system [29].
  • The reducing equivalents used by the human neutrophil respiratory burst oxidase are derived from NADPH generated by the hexose monophosphate shunt [30].

Gene context of NADPH

  • To determine the regulation of Ca2+ acquisition in growing root cells we show here that RHD2 is an NADPH oxidase, a protein that transfers electrons from NADPH to an electron acceptor leading to the formation of reactive oxygen species (ROS) [21].
  • We show here that in Saccharomyces cerevisiae, mitochondrial NADPH is largely provided by the product of the POS5 gene [31].
  • Normal G6PD activity far exceeds the capacity of human erythrocytes for a steady NADPH supply, which is limited upstream of G6PD [6].
  • The x-ray crystal structure of rat QR1 shows that the 43 amino acid C-terminal tail of QR1 provides the binding site for the hydrophilic portions of NADH and NADPH [32].
  • HO and NOS are both oxidative enzymes using NADPH as an electron donor [33].

Analytical, diagnostic and therapeutic context of NADPH


  1. Genetic variants of chronic granulomatous disease: prevalence of deficiencies of two cytosolic components of the NADPH oxidase system. Clark, R.A., Malech, H.L., Gallin, J.I., Nunoi, H., Volpp, B.D., Pearson, D.W., Nauseef, W.M., Curnutte, J.T. N. Engl. J. Med. (1989) [Pubmed]
  2. Nitric oxide synthase activity in infantile hypertrophic pyloric stenosis. Vanderwinden, J.M., Mailleux, P., Schiffmann, S.N., Vanderhaeghen, J.J., De Laet, M.H. N. Engl. J. Med. (1992) [Pubmed]
  3. Enx (Hox11L1)-deficient mice develop myenteric neuronal hyperplasia and megacolon. Shirasawa, S., Yunker, A.M., Roth, K.A., Brown, G.A., Horning, S., Korsmeyer, S.J. Nat. Med. (1997) [Pubmed]
  4. Twists in catalysis: alternating conformations of Escherichia coli thioredoxin reductase. Lennon, B.W., Williams, C.H., Ludwig, M.L. Science (2000) [Pubmed]
  5. Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. II. Effects on microbial proliferation and host survival in vivo. Mastroeni, P., Vazquez-Torres, A., Fang, F.C., Xu, Y., Khan, S., Hormaeche, C.E., Dougan, G. J. Exp. Med. (2000) [Pubmed]
  6. Quantitative evolutionary design of glucose 6-phosphate dehydrogenase expression in human erythrocytes. Salvador, A., Savageau, M.A. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  7. Mechanistic basis for nonlinear kinetics of aldehyde reduction catalyzed by aldose reductase. Grimshaw, C.E., Shahbaz, M., Putney, C.G. Biochemistry (1990) [Pubmed]
  8. Neuronal overexpression of heme oxygenase-1 correlates with an attenuated exploratory behavior and causes an increase in neuronal NADPH diaphorase staining. Maines, M.D., Polevoda, B., Coban, T., Johnson, K., Stoliar, S., Huang, T.J., Panahian, N., Cory-Slechta, D.A., McCoubrey, W.K. J. Neurochem. (1998) [Pubmed]
  9. Compartmental loss of NADPH diaphorase in the neuropil of the human striatum in Huntington's disease. Morton, A.J., Nicholson, L.F., Faull, R.L. Neuroscience (1993) [Pubmed]
  10. NADPH diaphorase histochemistry of the human hypothalamus. Sangruchi, T., Kowall, N.W. Neuroscience (1991) [Pubmed]
  11. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Bedard, K., Krause, K.H. Physiol. Rev. (2007) [Pubmed]
  12. Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Torres, M.A., Jones, J.D., Dangl, J.L. Nat. Genet. (2005) [Pubmed]
  13. Metabolic regulation of oocyte cell death through the CaMKII-mediated phosphorylation of caspase-2. Nutt, L.K., Margolis, S.S., Jensen, M., Herman, C.E., Dunphy, W.G., Rathmell, J.C., Kornbluth, S. Cell (2005) [Pubmed]
  14. Mutations in the genes encoding 11beta-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase interact to cause cortisone reductase deficiency. Draper, N., Walker, E.A., Bujalska, I.J., Tomlinson, J.W., Chalder, S.M., Arlt, W., Lavery, G.G., Bedendo, O., Ray, D.W., Laing, I., Malunowicz, E., White, P.C., Hewison, M., Mason, P.J., Connell, J.M., Shackleton, C.H., Stewart, P.M. Nat. Genet. (2003) [Pubmed]
  15. Pyridine nucleotide-dependent superoxide production by a cell-free system from human granulocytes. Babior, B.M., Curnutte, J.T., Kipnes, B.S. J. Clin. Invest. (1975) [Pubmed]
  16. Relationship between metabolic clearance rate of antipyrine and hepatic microsomal drug-oxidizing enzyme activities in humans without liver disease. Vuitton, D., Miguet, J.P., Camelot, G., Delafin, C., Joanne, C., Bechtel, P., Gillet, M., Carayon, P. Gastroenterology (1981) [Pubmed]
  17. Hydrogen donor system for Escherichia coli ribonucleoside-diphosphate reductase dependent upon glutathione. Holmgren, A. Proc. Natl. Acad. Sci. U.S.A. (1976) [Pubmed]
  18. Bidirectional regulation of osteoclast function by nitric oxide synthase isoforms. Brandi, M.L., Hukkanen, M., Umeda, T., Moradi-Bidhendi, N., Bianchi, S., Gross, S.S., Polak, J.M., MacIntyre, I. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  19. Identification of Ald6p as the target of a class of small-molecule suppressors of FK506 and their use in network dissection. Butcher, R.A., Schreiber, S.L. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  20. Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. Abo, A., Pick, E., Hall, A., Totty, N., Teahan, C.G., Segal, A.W. Nature (1991) [Pubmed]
  21. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Foreman, J., Demidchik, V., Bothwell, J.H., Mylona, P., Miedema, H., Torres, M.A., Linstead, P., Costa, S., Brownlee, C., Jones, J.D., Davies, J.M., Dolan, L. Nature (2003) [Pubmed]
  22. Atomic structure of ferredoxin-NADP+ reductase: prototype for a structurally novel flavoenzyme family. Karplus, P.A., Daniels, M.J., Herriott, J.R. Science (1991) [Pubmed]
  23. Nitric oxide mediates network oscillations of olfactory interneurons in a terrestrial mollusc. Gelperin, A. Nature (1994) [Pubmed]
  24. Priming of neutrophils for enhanced release of oxygen metabolites by bacterial lipopolysaccharide. Evidence for increased activity of the superoxide-producing enzyme. Guthrie, L.A., McPhail, L.C., Henson, P.M., Johnston, R.B. J. Exp. Med. (1984) [Pubmed]
  25. NADPH-binding component of the respiratory burst oxidase system: studies using neutrophil membranes from patients with chronic granulomatous disease lacking the beta-subunit of cytochrome b558. Tsunawaki, S., Mizunari, H., Namiki, H., Kuratsuji, T. J. Exp. Med. (1994) [Pubmed]
  26. Novel NADPH-binding domain revealed by the crystal structure of aldose reductase. Rondeau, J.M., Tête-Favier, F., Podjarny, A., Reymann, J.M., Barth, P., Biellmann, J.F., Moras, D. Nature (1992) [Pubmed]
  27. Components of sterol biosynthesis assembled on the oxygen-avid hemoglobin of Ascaris. Sherman, D.R., Guinn, B., Perdok, M.M., Goldberg, D.E. Science (1992) [Pubmed]
  28. Properties and biological activities of thioredoxins. Powis, G., Montfort, W.R. Annu. Rev. Pharmacol. Toxicol. (2001) [Pubmed]
  29. Manganese-dependent NADPH oxidation by granulocyte particles. The role of superoxide and the nonphysiological nature of the manganese requirement. Curnutte, J.T., Karnovsky, M.L., Babior, B.M. J. Clin. Invest. (1976) [Pubmed]
  30. Proton secretion by the sodium/hydrogen ion antiporter in the human neutrophil. Wright, J., Schwartz, J.H., Olson, R., Kosowsky, J.M., Tauber, A.I. J. Clin. Invest. (1986) [Pubmed]
  31. A novel NADH kinase is the mitochondrial source of NADPH in Saccharomyces cerevisiae. Outten, C.E., Culotta, V.C. EMBO J. (2003) [Pubmed]
  32. Unexpected genetic and structural relationships of a long-forgotten flavoenzyme to NAD(P)H:quinone reductase (DT-diaphorase). Zhao, Q., Yang, X.L., Holtzclaw, W.D., Talalay, P. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  33. Neural roles for heme oxygenase: contrasts to nitric oxide synthase. Barañano, D.E., Snyder, S.H. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  34. Modulation of ion channels in rod photoreceptors by nitric oxide. Kurenny, D.E., Moroz, L.L., Turner, R.W., Sharkey, K.A., Barnes, S. Neuron (1994) [Pubmed]
  35. Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase. Nishida, K., Harrison, D.G., Navas, J.P., Fisher, A.A., Dockery, S.P., Uematsu, M., Nerem, R.M., Alexander, R.W., Murphy, T.J. J. Clin. Invest. (1992) [Pubmed]
  36. Impaired expression of nitric oxide synthase in the gastric myenteric plexus of spontaneously diabetic rats. Takahashi, T., Nakamura, K., Itoh, H., Sima, A.A., Owyang, C. Gastroenterology (1997) [Pubmed]
  37. Neuronal NADPH diaphorase is a nitric oxide synthase. Hope, B.T., Michael, G.J., Knigge, K.M., Vincent, S.R. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  38. Structure and mechanism of mammalian thioredoxin reductase: the active site is a redox-active selenolthiol/selenenylsulfide formed from the conserved cysteine-selenocysteine sequence. Zhong, L., Arnér, E.S., Holmgren, A. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
WikiGenes - Universities