The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Molecular characterization of the in situ red cell membrane calcium pump by limited proteolysis.

In inside-out red cell membrane vesicles active calcium transport and the formation of the enzyme-phosphate complex ( EP) of the calcium pump were simultaneously investigated and the effects of a limited proteolytic digestion examined. In order to visualize the proteolyzed EP forms we have induced the formation of a maximum level EP from [gamma-32P]ATP in the presence of Ca2+ + La3+ and applied a good-resolution acidic discontinuous sodium dodecyl sulfate-polyacrylamide gel electrophoresis system. Proteolysis of inside-out vesicle membranes by trypsin, Pronase, papain, or chymotrypsin produces a calmodulin-like activation of the calcium pump, abolishes its calmodulin sensitivity, and decreases the original 140-kDa EP complex to a limit polypeptide of 80 kDa. Trypsin digestion produces another major intermediary fragment of 90 kDa, which is still a low-activity calmodulin-sensitive form of the pump. The red cell calcium pump is activated by trypsin both in the absence and presence of Ca2+ during digestion although the rate of activation and the appearance of the 80-kDa polypeptide are enhanced by Ca2+. If proteolytic digestion is carried out by chymotrypsin, a calmodulin-insensitive maximum activation of the calcium pump coincides with the formation of a 125-130-kDa EP-forming polypeptide. Chymotrypsin and carboxypeptidase A have synergistic effects on the formation of this latter high-activity species. Based on these data we suggest a probable molecular arrangement for the functional parts of the red cell membrane calcium pump.[1]


  1. Molecular characterization of the in situ red cell membrane calcium pump by limited proteolysis. Sarkadi, B., Enyedi, A., Földes-Papp, Z., Gárdos, G. J. Biol. Chem. (1986) [Pubmed]
WikiGenes - Universities