The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Oxypurine cycle in human erythrocytes regulated by pH, inorganic phosphate, and oxygen.

The effect of pH, PO2, and inorganic phosphate on the uptake and metabolism of hypoxanthine by erythrocytes has been studied. Uptake of hypoxanthine and accumulation of inosine 5'-monophosphate (IMP) were markedly increased at acid pH, high external phosphate concentrations, and low PO2. Release of accumulated IMP as hypoxanthine occurred at alkaline pH values and low external phosphate concentrations. Conditions favoring IMP accumulation gave rise, in the absence of hypoxanthine, to a corresponding increase in 5'-phosphoribosyl-1-pyrophosphate. Intracellular phosphate concentrations were markedly pH dependent and a model is presented whereby hypoxanthine uptake and release are controlled by intracellular concentrations of inorganic phosphate and 2,3-bisphosphoglycerate. These allosteric effectors influence, in opposing ways, two enzymes governing IMP accumulation, namely 5'-phosphoribosyl-1-pyrophosphate synthetase and 5'-nucleotidase. These metabolic properties suggest that the erythrocyte could play a role in the removal of hypoxanthine from anoxic tissue.[1]


  1. Oxypurine cycle in human erythrocytes regulated by pH, inorganic phosphate, and oxygen. Berman, P.A., Black, D.A., Human, L., Harley, E.H. J. Clin. Invest. (1988) [Pubmed]
WikiGenes - Universities