Possible function of matrix proteins in fluoride incorporation into enamel mineral during porcine amelogenesis.
The present study was undertaken to elucidate the mechanism of fluoride incorporation into secretory enamel mineral, with porcine enamel used as a model. Although the fluoride content in the enamel varied greatly among the animals, we observed that the fluoride-to-calcium ratio in the enamel tissue was maximal at the beginning of the secretory stage; the F/Ca ratio decreased (and leveled off) with the advancement of mineralization. In vitro work showed that some of the fluoride in the secretory enamel tissue was removed with the extraction of organic matter, mostly amelogenins. Furthermore, coating hydroxyapatite crystals with enamel matrix proteins resulted in a retardation of fluoride incorporation into the crystals when exposed to fluoride solutions, as a result of an inhibition of apatite reprecipitation. We also confirmed that the growth kinetics of fluoridated apatite onto HA seeds decreased with increasing coverage of the seed surface with the enamel proteins. All the results of the present study strongly suggest that the fluoride incorporation into enamel mineral during the secretory stage may be regulated by the kinetics of mineralization, which is highly dependent on the driving force for precipitation and the presence of proteinaceous inhibitors, mainly amelogenins.[1]References
- Possible function of matrix proteins in fluoride incorporation into enamel mineral during porcine amelogenesis. Aoba, T., Collins, J., Moreno, E.C. J. Dent. Res. (1989) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg