Neurobiology. SARM1 activation triggers axon degeneration locally via NAD⁺ destruction.
Axon degeneration is an intrinsic self-destruction program that underlies axon loss during injury and disease. Sterile alpha and TIR motif-containing 1 (SARM1) protein is an essential mediator of axon degeneration. We report that SARM1 initiates a local destruction program involving rapid breakdown of nicotinamide adenine dinucleotide (NAD(+)) after injury. We used an engineered protease-sensitized SARM1 to demonstrate that SARM1 activity is required after axon injury to induce axon degeneration. Dimerization of the Toll-interleukin receptor (TIR) domain of SARM1 alone was sufficient to induce locally mediated axon degeneration. Formation of the SARM1 TIR dimer triggered rapid breakdown of NAD(+), whereas SARM1-induced axon destruction could be counteracted by increased NAD(+) synthesis. SARM1-induced depletion of NAD(+) may explain the potent axon protection in Wallerian degeneration slow (Wld(s)) mutant mice. [1]References
- Neurobiology. SARM1 activation triggers axon degeneration locally via NAD⁺ destruction. Gerdts, J., Brace, E.J., Sasaki, Y., DiAntonio, A., Milbrandt, J. Science (2015) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg









