The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Experimental study on the adsorption of excess heparin with anion exchange resin fiber.

Anion exchange resin fiber (Ionex) was used as a heparin adsorbent. Ionex has the adsorption capacity of 70 mg/g (weight by desiccation) for heparin, and was used in an attempt to remove the heparin from blood-perfused artificial organs, before the blood was transfused back into the patients. In the ex vivo study, the 5 systemically heparinized dogs (500 U/kg) were treated with a 35-40 g column of Ionex, by direct hemoperfusion (DHP). The concentration of heparin was significantly reduced, within 15 to 60 minutes, using the Ionex. This suggested the possibility of removing excess heparin from the living body. In in vitro, the relationship between the amount of heparin by Ionex and the blood-flow volume were evaluated. Whole blood taken from dogs was added to 5 U/ml of heparin. This was then introduced into a small column containing 0.9 g Ionex, at blood-flow rates of 0.8, 1.6, and 3.2 ml/min. A good adsorption capacity was shown at the blood-flow rate of 0.8 ml/min. One possible explanation for this is that the heparin dispersed in the blood cells gradually was passed on into the plasma and, so, did not have time to be adsorbed at the faster flow rates.[1]

References

  1. Experimental study on the adsorption of excess heparin with anion exchange resin fiber. Matsuda, K., Oka, T., Tani, T., Hanasawa, K., Yoshioka, T., Aoki, H., Endo, Y., Ishii, Y., Numa, K., Kodama, M. Artificial organs. (1989) [Pubmed]
 
WikiGenes - Universities