The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The metabolic and mitogenic effects of both insulin and insulin-like growth factor are enhanced by transfection of insulin receptors into NIH3T3 fibroblasts.

Insulin and insulin-like growth factor (IGF-I) have 50% sequence homology and regulate similar cellular functions. Their membrane receptors also share 84% homology in a tyrosine kinase domain essential to transmembrane signaling and may thus share common postreceptor paths. To probe action mechanisms for these related hormones, we examined the receptor and postreceptor overlap of responses stimulated by insulin and IGF-I. NIH3T3 mouse fibroblasts have few endogenous insulin receptors and are insensitive to insulin; they have IGF-I receptors and are responsive to IGF-I. Stable transfection of these cells with cDNA for the human insulin receptor yielded a cell line (3T3/ HIR) expressing greater than 6 x 10(6) receptors/cell that was highly sensitive and responsive to insulin for stimulation of deoxy[14C]glucose uptake and [3H]thymidine incorporation. The cells also showed increased responses to IGF-I, although the sensitivity was less than that for insulin. The receptor specificity of such responses was examined with a monoclonal antibody MA10 that bound to insulin receptors, but elicited no responses. When 3T3/ HIR cells were preincubated with MA10, subsequent insulin- or IGF-I-stimulated deoxy[14C]glucose uptake was markedly inhibited. Likewise, the presence of MA10 caused a 10-fold increase in the concentration of insulin needed to stimulate half-maximal incorporation of [3H]thymidine and also led to diminished IGF-I-stimulated responses. These results showed that the transfected human insulin receptors coupled readily with existing effector pathways in the mouse fibroblasts and mediated metabolic and mitogenic responses to both insulin and IGF-I. Such findings indicate that insulin and IGF-I regulate common cellular functions using both overlapping receptor and postreceptor signaling pathways.[1]

References

 
WikiGenes - Universities