The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Molecular species of glycerophospholipids and sphingomyelins of human plasma: comparison to red blood cells.

In addition to diacyl glycerophosphocholine and sphingomyelin, human plasma also contains small amounts of other glycerophospholipids, which may have special metabolic function. The structure and origin of these minor plasma lipids has not been determined. Knowledge of the detailed composition of the phospholipids of red blood cells (Myher et al., Lipids 24, 1989) permits evaluation of one of the possible sources. This study reports the detailed analyses of plasma glycerophospholipids made in parallel to those of the erythrocyte lipids obtained from the same blood using HPLC and GLC methods. The proportions of the major phospholipid classes in the plasma and erythrocytes were similar to published values, including the essential absence of diradyl glycerophosphoserine from plasma. Plasma diradyl glycerophosphocholine contained 93.0% diacyl, 3.4% alkylkacyl and 3.6% alkenylacyl, whereas the diradyl glycerophosphoethanolamine consisted of 71.8% alkenylacyl, 19.9% diacyl and 8.3% alkylacyl subclasses. The diradyl glycerophosphoinositol was 100% diacyl. The content of the minor subclasses of plasma diradyl glycerophosphocholine is similar to that of the red cells, but the ether content of the diradyl glycerophosphoethanolamine is higher in plasma than in cells. The lipid ether subclasses of plasma glycerophospholipids also contained a higher proportion of the C20, C22 and C24 alkyl and alkenyl chains than those of the cells. Furthermore, the C16 and C18-containing species in diradyl glycerophosphoethanolamine subclasses varied with the nature of the polyunsaturated acid, whereas in diradyl glycerophosphocholine subclasses the polyunsaturated acids were combined with the C16 and C18 acids in equal proportions. The significant differences in the molecular species of glycerophospholipids and sphingomyelin between plasma and red cells would appear to limit any direct transfer or equilibration of their lipid components.[1]

References

 
WikiGenes - Universities