The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Fourier-transform infrared spectroscopy studies of lipid/protein interaction in pulmonary surfactant.

The thermotropic behavior of intact bovine lung surfactant and its hydrophobic extract has been monitored via the temperature dependence of the 2850 cm-1 phospholipid acyl chain CH2 symmetric stretching frequencies in the IR spectrum. A broad, reversible, melting event was noted from about 15 to 40 degrees C in both the lipid extract and the native surfactant. Slight protein-induced disordering of the lipid acyl chains was evident. The melting event was confirmed by differential scanning calorimetry. The major surfactant protein, a 30-36-kDa class of glycoprotein (SP-A), has been isolated from bovine lung lavage and purified by affinity chromatography. SP-A was reconstituted into a binary lipid mixture of acyl chain perdeuterated dipalmitoylphosphatidylcholine/dipalmitoylphosphatidylglycerol (DPPC-d62/DPPG, 85:15 w/w), a ratio which approximates that in surfactant. Use of DPPC-d62 permitted the FT-IR determination of the effect of protein on the thermotropic behavior of individual phospholipids in the binary mixture. High levels of SP-A induced an ordering of the phospholipids, as shown by an increase in the transition temperature of DPPC-d62 compared to the lipid model. In contrast, a mixture of the other surfactant proteins induced a progressive disordering of the phospholipids and disruption of the cooperativity of the melting event. Transition widths of about 3 degrees, 9 degrees, and 27 degrees were noted for protein:lipid ratios of 0, 1:1, and 2:1 (w/w), respectively. Possible roles for the various proteins in surfactant function are discussed in light of these data.[1]


WikiGenes - Universities