The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Transition Temperature

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Transition Temperature

 

High impact information on Transition Temperature

 

Biological context of Transition Temperature

 

Anatomical context of Transition Temperature

 

Associations of Transition Temperature with chemical compounds

 

Gene context of Transition Temperature

  • In addition, SAA4 as well as the apolipoproteins broadened the range and increased the temperature of the gel-liquid crystal transition temperature of DMPC [26].
  • Nonlamellar lipids also increased the transition temperature of CYP1A2 in thermal unfolding and reduced the incubation time-dependent detachment of membrane-bound CYP1A2 from vesicles [27].
  • Thermal unfolding of PSP-I/PSP-II and aSFP were irreversible and followed a one-step process with transition temperatures (Tm) of 60.5 degrees C and 78.6 degrees C, respectively [28].
  • Arrhenius plots of the data revealed that AChE exhibits a biphasic Arrhenius plot with a distinct break (transition temperature) at about 15.2 kcal/mol [29].
  • FIS was found to exercise a direct positive transcriptional control at permissive temperature (37 degrees C), when H-NS fails to repress virF, as well as an indirect effect by partially counteracting H-NS inhibition at the transition temperature (32 degrees C) [30].
 

Analytical, diagnostic and therapeutic context of Transition Temperature

References

  1. Structural basis of the temperature transition of Pf1 bacteriophage. Thiriot, D.S., Nevzorov, A.A., Opella, S.J. Protein Sci. (2005) [Pubmed]
  2. Characterization of the phase transitions of trehalose dihydrate on heating and subsequent dehydration. Taylor, L.S., York, P. Journal of pharmaceutical sciences. (1998) [Pubmed]
  3. The cryoprotectant trehalose destabilises the bilayer organisation of Escherichia coli-derived membrane systems at elevated temperatures as determined by 2H and 31P-NMR. Fabrie, C.H., Smeets, J.M., de Kruijff, B., de Gier, J. Chem. Phys. Lipids (1994) [Pubmed]
  4. Mitochondrial calcium transport and calcium-activated phospholipase in porcine malignant hyperthermia. Cheah, K.S., Cheah, A.M. Biochim. Biophys. Acta (1981) [Pubmed]
  5. Thermal unfolding of phosphorylating D-glyceraldehyde-3-phosphate dehydrogenase studied by differential scanning calorimetry. Levashov, P., Orlov, V., Boschi-Muller, S., Talfournier, F., Asryants, R., Bulatnikov, I., Muronetz, V., Branlant, G., Nagradova, N. Biochim. Biophys. Acta (1999) [Pubmed]
  6. Superconductivity in molecular crystals induced by charge injection. Schön, J.H., Kloc, C., Batlogg, B. Nature (2000) [Pubmed]
  7. Potential-dependent transition temperature of ionic channels induced by glutamate in locust muscle. Anderson, C.R., Cull-Candy, S.G., Miledi, R. Nature (1977) [Pubmed]
  8. Intracellular localization of a group II chaperonin indicates a membrane-related function. Trent, J.D., Kagawa, H.K., Paavola, C.D., McMillan, R.A., Howard, J., Jahnke, L., Lavin, C., Embaye, T., Henze, C.E. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  9. Role of phospholipids containing docosahexaenoyl chains in modulating the activity of protein kinase C. Giorgione, J., Epand, R.M., Buda, C., Farkas, T. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  10. Kinetics and thermodynamics of folding in model proteins. Camacho, C.J., Thirumalai, D. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  11. Escherichia coli mutants suppressing replication-defective mutations of the ColE1 plasmid. Naito, S., Kitani, T., Ogawa, T., Okazaki, T., Uchida, H. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  12. Tissue-type plasminogen activator (tPA) interacts with urokinase-type plasminogen activator (uPA) via tPA's lysine binding site. An explanation of the poor fibrin affinity of recombinant tPA/uPA chimeric molecules. Novokhatny, V., Medved, L., Lijnen, H.R., Ingham, K. J. Biol. Chem. (1995) [Pubmed]
  13. Effects of molecular structure on the stability of a thermotropic liquid crystal. Gas electron diffraction study of the molecular structure of phenyl benzoate. Tsuji, T., Takeuchi, H., Egawa, T., Konaka, S. J. Am. Chem. Soc. (2001) [Pubmed]
  14. Thermal unfolding and aggregation of human complement protein C9: a differential scanning calorimetry study. Lohner, K., Esser, A.F. Biochemistry (1991) [Pubmed]
  15. Anchor dependency for non-glycerol based cationic lipofectins: mixed bag of regular and anomalous transfection profiles. Singh, R.S., Mukherjee, K., Banerjee, R., Chaudhuri, A., Hait, S.K., Moulik, S.P., Ramadas, Y., Vijayalakshmi, A., Rao, N.M. Chemistry (Weinheim an der Bergstrasse, Germany) (2002) [Pubmed]
  16. N-parinaroyl glycosphingolipids: synthesis and characterization of novel fluorescent probes of membrane structure. Rintoul, D.A., Redd, M.B., Wendelburg, B. Biochemistry (1986) [Pubmed]
  17. Apolipoprotein C-III/sphingomyelin recombinants: formation, isolation, and characterization. Ahmad, T.Y., Guyton, J.R., Sparrow, J.T., Morrisett, J.D. Biochemistry (1986) [Pubmed]
  18. Changes in (Na+ + K+)-ATPase activity of Ehrlich ascites tumor cells produced by alteration of membrane fatty acid composition. Solomonson, L.P., Liepkalns, V.A., Spector, A.A. Biochemistry (1976) [Pubmed]
  19. New cyclopenta[a]naphthalene derivatives. Synthesis of 2-(carbamylmethyl)-8-hydroxy-3H-cyclopental[a]naphthalene as a possible deoxyribonucleic acid binding agent. Kundu, N.G. J. Med. Chem. (1980) [Pubmed]
  20. Dynamic interactions between microtubules and artificial membranes. Caron, J.M., Berlin, R.D. Biochemistry (1987) [Pubmed]
  21. Lateral diffusion in binary mixtures of cholesterol and phosphatidylcholines. Rubenstein, J.L., Smith, B.A., McConnell, H.M. Proc. Natl. Acad. Sci. U.S.A. (1979) [Pubmed]
  22. Thermotropic behavior of some fluorodimyristoylphosphatidylcholines. Sturtevant, J.M., Ho, C., Reimann, A. Proc. Natl. Acad. Sci. U.S.A. (1979) [Pubmed]
  23. On the origin of the enthalpy and entropy convergence temperatures in protein folding. Fu, L., Freire, E. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  24. Effect of anesthetics and pressure on the thermotropic behavior of multilamellar dipalmitoylphosphatidylcholine liposomes. Mountcastle, D.B., Biltonen, R.L., Halsey, M.J. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  25. Control of oligomeric enzyme thermostability by protein engineering. Ahern, T.J., Casal, J.I., Petsko, G.A., Klibanov, A.M. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  26. Interaction of the serum amyloid A proteins with phospholipid. Bausserman, L.L., Herbert, P.N., Forte, T., Klausner, R.D., McAdam, K.P., Osborne, J.C., Rosseneu, M. J. Biol. Chem. (1983) [Pubmed]
  27. Involvement of nonlamellar-prone lipids in the stability increase of human cytochrome P450 1A2 in reconstituted membranes. Ahn, T., Yun, C.H., Oh, D.B. Biochemistry (2005) [Pubmed]
  28. Analysis of the structural organization and thermal stability of two spermadhesins. Calorimetric, circular dichroic and Fourier-transform infrared spectroscopic studies. Menéndez, M., Gasset, M., Laynez, J., López-Zumel, C., Usobiaga, P., Töpfer-Petersen, E., Calvete, J.J. Eur. J. Biochem. (1995) [Pubmed]
  29. Temperature effects on cholinesterases from rat brain capillaries. Catalan, R.E., Hernandez, F. Biosci. Rep. (1986) [Pubmed]
  30. Involvement of FIS in the H-NS-mediated regulation of virF gene of Shigella and enteroinvasive Escherichia coli. Falconi, M., Prosseda, G., Giangrossi, M., Beghetto, E., Colonna, B. Mol. Microbiol. (2001) [Pubmed]
  31. Cyclic analog of elastin polyhexapeptide exhibits an inverse temperature transition leading to crystallization. Urry, D.W., Long, M.M., Sugano, H. J. Biol. Chem. (1978) [Pubmed]
  32. Anthracenyl crown ethers and cryptands as fluorescent probes for solid-phase transitions of phosphatidylcholines: syntheses and phospholipid membrane studies. Herrmann, U., Tümmler, B., Maass, G., Koo Tze Mew, P., Vögtle, F. Biochemistry (1984) [Pubmed]
  33. DNA binding by antitumor anthracene derivatives. Wunz, T.P., Craven, M.T., Karol, M.D., Hill, G.C., Remers, W.A. J. Med. Chem. (1990) [Pubmed]
  34. An investigation into the effects of residual water on the glass transition temperature of polylactide microspheres using modulated temperature DSC. Passerini, N., Craig, D.Q. Journal of controlled release : official journal of the Controlled Release Society. (2001) [Pubmed]
  35. Trifluoroethanol-induced "molten globule" state in stem bromelain. Gupta, P., Khan, R.H., Saleemuddin, M. Arch. Biochem. Biophys. (2003) [Pubmed]
 
WikiGenes - Universities