The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Alteration of actin-tropomyosin interaction in 2,4-pentanedione-treated rabbit skeletal myofibrils.

In previous work, we (El-Saleh, S., Theiret, R., Johnson, P., and Potter, J. D. (1984) J. Biol. Chem. 259, 11014-11021) presented evidence that Ca2+ activation of skeletal myofilaments depends on a specific actin domain. We showed that rabbit skeletal thin filaments reconstituted with actin modified at Lys-237 activate heavy meromyosin X Mg2+-ATPase activity independently of the Ca2+ ion concentration. The modification, which apparently blocks the inhibitory effects of troponin-tropomyosin (Tn X Tm), on acto-heavy meromyosin X Mg2+-ATPase activity, consisted of conversion of Lys-237 to an enamine by reaction of purified actin with 2,4-pentanedione (PD). In experiments reported here, we have treated myofibrils with PD with the idea of altering actin in its native state within the myofilament lattice. Preparations of native and Tn X Tm free ("desensitized") myofibrils were incubated with PD (100 mol/mol of actin lysine) under rigorous conditions (10 mM 4-morpholinepropanesulfonic acid, pH 7.0, 2.0 nM [ethylenebis(oxyethylenenitrilo)]tetraacetic acid, 0.4 mM dithiothreitol, and 0.15 mM NaN3). Actin isolated from PD X myofibrils contained 0.5 mol of enamine/mol. In the presence of Ca2+, the Mg2+-ATPase activity of PD-treated myofibrils was 110-120% of the maximum Ca2+-stimulated Mg2+-ATPase activity of untreated control myofibrils. In low free Ca2+ (pCa greater than 8), the Mg2+-ATPase activity of the PD-treated myofibrils was not suppressed and remained at 100-106% of the maximum activity of the control myofibrils. Ca2+ sensitivity of the PD-treated myofibrils was restored following treatment with hydroxylamine, which hydrolyzes enamine's products. Preparations of desensitized myofibrils reconstituted with PD-modified or unmodified Tn X Tm demonstrated the same Ca2+-sensitive ATPase activities. On the other hand, preparations reconstituted with unmodified or PD-modified Tn X Tm and PD-modified desensitized myofibrils were insensitive to Ca2+ ion concentration. The Mg2+-ATPase activity of preparations of myosin treated with PD was not activated by modified or unmodified actin. Our results indicate that is is possible to produce an active state(s) of the myofibrils in the absence and presence of Ca2+ by specific alteration of the actin X Tm interaction following modification of myofibrillar actin most likely at Lys-237.[1]


  1. Alteration of actin-tropomyosin interaction in 2,4-pentanedione-treated rabbit skeletal myofibrils. el-Saleh, S.C., Potter, J.D., Solaro, R.J. J. Biol. Chem. (1986) [Pubmed]
WikiGenes - Universities