The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Wear and microhardness of a silver-sintered glass-ionomer cement.

Knoop Hardness and pin-and-disc-wear measurements were made on a commercial silver-sintered glass-ionomer cement. The objective was to determine whether the incorporation of a bonded-metal-to-glass filler would enhance durability as determined by the above measurements. As with the previous work on conventional (non-metalized) glass-ionomer cements, the specimens were preconditioned at 37 degrees C in air, water, 0.02 mol/L lactic acid (pH 2.67), and heptane. The influence of these media on the microhardness of the silver-sintered material was about the same as that on the conventional materials. Storing in air produced dehydration, which increased the hardness considerably. Heptane storage increased the hardness less, but this increase is attributed to continued curing during storage. After storage in water, the hardness was essentially unchanged; the influence of increased cure is believed to be offset by softening or plasticization from water uptake. Lactic acid produced a decrease in hardness from chemical dissolution as seen from the SEM observations. In most cases, in particular for the air-stored specimens, the wear resistance was enhanced markedly over that of the conventional materials evaluated previously. The exception was the lactic acid-stored specimens for which little, or no, improvement was observed during early periods of wear. The incorporation of silver appeared to provide lubrication, thus reducing wear. However, catastrophic failure from brittle fracture was still a problem, but its occurrence was less frequent.[1]

References

  1. Wear and microhardness of a silver-sintered glass-ionomer cement. McKinney, J.E., Antonucci, J.M., Rupp, N.W. J. Dent. Res. (1988) [Pubmed]
 
WikiGenes - Universities