In vitro synthesis of the iron-molybdenum cofactor of nitrogenase.
Molybdate- and ATP-dependent in vitro synthesis of the iron-molybdenum cofactor (FeMo-co) of nitrogenase requires the protein products of at least the nifB, nifN, and nifE genes. Extracts of FeMo-co-negative mutants of Klebsiella pneumoniae and Azotobacter vinelandii with lesions in different genes can be complemented for FeMo-co synthesis. Both K. pneumoniae and A. vinelandii dinitrogenase (component I) deficient in FeMo-co can be activated by FeMo-co synthesized in vitro. Properties of the partially purified dinitrogenase activated by FeMo-co synthesized in vitro were comparable to those of dinitrogenase from the wild-type organism; e.g., ratios of acetylene- to nitrogen-reduction activities, as well as those of acetylene reduction activities to EPR spectrum peak height at g = 3.65, were very similar. A. vinelandii mutants UW45 and CA30 have mutations in a gene functionally equivalent to nifB of K. pneumoniae.[1]References
- In vitro synthesis of the iron-molybdenum cofactor of nitrogenase. Shah, V.K., Imperial, J., Ugalde, R.A., Ludden, P.W., Brill, W.J. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg