The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Azotobacter

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Azotobacter

  • We studied the effects of different concentrations of Mn2+ and Mg2+ on assimilatory NO3- reduction and NH4+ assimilation in cultures of two microorganisms commonly found in soil [Pseudomonas fluorescens (ATCC 13525) and Azotobacter chroococcum (ATCC 9043)] and in an enrichment culture of soil microorganisms [1].
  • The core extrusion method has been applied to the determination of the type ([2Fe-2S], [4Fe-4S]) and number of iron-sulfur centers in the FeMo proteins of the nitrogenases from Clostridium pasteurianum and Azotobacter vinelandii [2].
  • In this paper, I report the purification of a protein from Escherichia coli that is very similar in sequence, molecular weight, and the reactions it can catalyze to the protein encoded by the Azotobacter vinelandii nifS gene [3].
  • These are typified by the 3Fe centers in aconitase, Desulfovibrio gigas FdII, and Azotobacter crooccocum Fd [4].
  • The structures of Azotobacter vinelandii ferredoxin I (AvFdI) and Peptococcus aerogenes ferredoxin (PaFd), near their analogous [4e-4S]2+/+ clusters, are highly conserved (Backes, G., Mino, Y., Loehr, T.M., Meyer, T.E., Cusanovich, M.A., Sweeney, W.V., Adman, E.T., and Sanders-Loehr, J. (1991) J. Am. Chem. Soc. 11, 2055-2064) [5].
 

High impact information on Azotobacter

  • In Azotobacter vinelandii ferredoxin I, reduction of a buried iron-sulphur cluster draws in a solvent proton, whereas re-oxidation is 'gated' by proton release to the solvent [6].
  • Structures recently proposed for the FeMo-cofactor and P-cluster pair of the nitrogenase molybdenum-iron (MoFe)-protein from Azotobacter vinelandii have been crystallographically verified at 2.2 angstrom resolution [7].
  • Structural genes for the vanadium nitrogenase from Azotobacter chroococcum [8].
  • Regulation of nitrogen metabolism in Azotobacter vinelandii: isolation of ntr and glnA genes and construction of ntr mutants [9].
  • Second gene (nifH*) coding for a nitrogenase iron protein in Azotobacter chroococcum is adjacent to a gene coding for a ferredoxin-like protein [10].
 

Chemical compound and disease context of Azotobacter

 

Biological context of Azotobacter

 

Anatomical context of Azotobacter

 

Gene context of Azotobacter

 

Analytical, diagnostic and therapeutic context of Azotobacter

References

  1. Effects of Mn2+ and Mg2+ on assimilation of NO3- and NH4+ by soil microorganisms. McCarty, G.W., Bremner, J.M. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  2. Identification of iron-sulfur centers in the iron-molybdenum proteins of nitrogenase. Kurtz, D.M., McMillan, R.S., Burgess, B.K., Mortenson, L.E., Holm, R.H. Proc. Natl. Acad. Sci. U.S.A. (1979) [Pubmed]
  3. Escherichia coli contains a protein that is homologous in function and N-terminal sequence to the protein encoded by the nifS gene of Azotobacter vinelandii and that can participate in the synthesis of the Fe-S cluster of dihydroxy-acid dehydratase. Flint, D.H. J. Biol. Chem. (1996) [Pubmed]
  4. Characterization of the Fe-S cluster in aconitase using low temperature magnetic circular dichroism spectroscopy. Johnson, M.K., Thomson, A.J., Richards, A.J., Peterson, J., Robinson, A.E., Ramsay, R.R., Singer, T.P. J. Biol. Chem. (1984) [Pubmed]
  5. Azotobacter vinelandii ferredoxin I. Alteration of individual surface charges and the [4FE-4S]2+/+ cluster reduction potential. Shen, B., Jollie, D.R., Stout, C.D., Diller, T.C., Armstrong, F.A., Gorst, C.M., La Mar, G.N., Stephens, P.J., Burgess, B.K. J. Biol. Chem. (1994) [Pubmed]
  6. Atomically defined mechanism for proton transfer to a buried redox centre in a protein. Chen, K., Hirst, J., Camba, R., Bonagura, C.A., Stout, C.D., Burgess, B.K., Armstrong, F.A. Nature (2000) [Pubmed]
  7. The nitrogenase FeMo-cofactor and P-cluster pair: 2.2 A resolution structures. Chan, M.K., Kim, J., Rees, D.C. Science (1993) [Pubmed]
  8. Structural genes for the vanadium nitrogenase from Azotobacter chroococcum. Robson, R.L., Woodley, P.R., Pau, R.N., Eady, R.R. EMBO J. (1989) [Pubmed]
  9. Regulation of nitrogen metabolism in Azotobacter vinelandii: isolation of ntr and glnA genes and construction of ntr mutants. Toukdarian, A., Kennedy, C. EMBO J. (1986) [Pubmed]
  10. Second gene (nifH*) coding for a nitrogenase iron protein in Azotobacter chroococcum is adjacent to a gene coding for a ferredoxin-like protein. Robson, R., Woodley, P., Jones, R. EMBO J. (1986) [Pubmed]
  11. Identification of a nitrogenase FeMo cofactor precursor on NifEN complex. Hu, Y., Fay, A.W., Ribbe, M.W. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  12. Site-directed mutagenesis of Azotobacter vinelandii ferredoxin I: [Fe-S] cluster-driven protein rearrangement. Martín, A.E., Burgess, B.K., Stout, C.D., Cash, V.L., Dean, D.R., Jensen, G.M., Stephens, P.J. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  13. H2-uptake activity of the MoFe protein component of Azotobacter vinelandii nitrogenase. Wang, Z.C., Watt, G.D. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  14. Spectroscopic studies of ferricyanide oxidation of Azotobacter vinelandii ferredoxin I. Morgan, T.V., Stephens, P.J., Devlin, F., Stout, C.D., Melis, K.A., Burgess, B.K. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  15. Isolation of a molybdenum--iron cluster from nitrogenase. Shah, V.K., Brill, W.J. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  16. Azotobacter vinelandii NIFL is a flavoprotein that modulates transcriptional activation of nitrogen-fixation genes via a redox-sensitive switch. Hill, S., Austin, S., Eydmann, T., Jones, T., Dixon, R. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  17. Nitrogen fixation by Azotobacter vinelandii in tungsten-containing medium. Hales, B.J., Case, E.E. J. Biol. Chem. (1987) [Pubmed]
  18. Evidence for electron transfer-dependent formation of a nitrogenase iron protein-molybdenum-iron protein tight complex. The role of aspartate 39. Lanzilotta, W.N., Fisher, K., Seefeldt, L.C. J. Biol. Chem. (1997) [Pubmed]
  19. Structure of Azotobacter vinelandii 7Fe ferredoxin. Amino acid sequence and electron density maps of residues. Howard, J.B., Lorsbach, T.W., Ghosh, D., Melis, K., Stout, C.D. J. Biol. Chem. (1983) [Pubmed]
  20. The catalytic activities of the bifunctional Azotobacter vinelandii mannuronan C-5-epimerase and alginate lyase AlgE7 probably originate from the same active site in the enzyme. Svanem, B.I., Strand, W.I., Ertesvag, H., Skjåk-Braek, G., Hartmann, M., Barbeyron, T., Valla, S. J. Biol. Chem. (2001) [Pubmed]
  21. Chlorpromazine inhibition of electron transport in Azotobacter vinelandii membranes. Wong, T.Y., Maier, R.J. Biochim. Biophys. Acta (1985) [Pubmed]
  22. Cysteine sulfinate desulfinase, a NIFS-like protein of Escherichia coli with selenocysteine lyase and cysteine desulfurase activities. Gene cloning, purification, and characterization of a novel pyridoxal enzyme. Mihara, H., Kurihara, T., Yoshimura, T., Soda, K., Esaki, N. J. Biol. Chem. (1997) [Pubmed]
  23. Crystallographic and enzymatic investigations on the role of Ser558, His610, and Asn614 in the catalytic mechanism of Azotobacter vinelandii dihydrolipoamide acetyltransferase (E2p). Hendle, J., Mattevi, A., Westphal, A.H., Spee, J., de Kok, A., Teplyakov, A., Hol, W.G. Biochemistry (1995) [Pubmed]
  24. Structure and regulation of the AMP nucleosidase gene (amn) from Escherichia coli. Leung, H.B., Kvalnes-Krick, K.L., Meyer, S.L., deRiel, J.K., Schramm, V.L. Biochemistry (1989) [Pubmed]
  25. Mobile sequences in the pyruvate dehydrogenase complex, the E2 component, the catalytic domain and the 2-oxoglutarate dehydrogenase complex of Azotobacter vinelandii, as detected by 600 MHz 1H-NMR spectroscopy. Hanemaaijer, R., Vervoort, J., Westphal, A.H., de Kok, A., Veeger, C. FEBS Lett. (1988) [Pubmed]
  26. The Azotobacter chroococcum hydrogenase gene cluster: sequences and genetic analysis of four accessory genes, hupA, hupB, hupY and hupC. Tibelius, K.H., Du, L., Tito, D., Stejskal, F. Gene (1993) [Pubmed]
  27. Circular dichroism and x-ray spectroscopies of Azotobacter vinelandii nitrogenase iron protein. MgATP and MgADP induced protein conformational changes affecting the [4Fe-4S] cluster and characterization of a [2Fe-2S] form. Ryle, M.J., Lanzilotta, W.N., Seefeldt, L.C., Scarrow, R.C., Jensen, G.M. J. Biol. Chem. (1996) [Pubmed]
  28. Resolution of two subunits from the molybdenum-iron protein of Azotobacter vinelandii nitrogenase. Harker, A.R., Wullstein, L.H. J. Biol. Chem. (1981) [Pubmed]
  29. Reconstituted and native iron-cores of bacterioferritin and ferritin. Mann, S., Williams, J.M., Treffry, A., Harrison, P.M. J. Mol. Biol. (1987) [Pubmed]
 
WikiGenes - Universities