The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

molybdate     dioxido-dioxo-molybdenum

Synonyms: CPD-3, MoO4-2, MoO42-, CHEBI:36264, AC1L2NK8, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of dioxido-dioxo-molybdenum

 

Psychiatry related information on dioxido-dioxo-molybdenum

  • In presence of 20 mM molybdate ion and a reaction time of 0.5-2 h at 0-2 degrees C, we are able to detect the appearance of a [6.7-3H]-17,21-dimethyl-19-nor-4,9-pregnadiene-3,20-dione ([3H]-R5020) and [3H]-progesterone binding moiety in human prostatic cytosol [6].
 

High impact information on dioxido-dioxo-molybdenum

 

Chemical compound and disease context of dioxido-dioxo-molybdenum

 

Biological context of dioxido-dioxo-molybdenum

 

Anatomical context of dioxido-dioxo-molybdenum

 

Associations of dioxido-dioxo-molybdenum with other chemical compounds

  • The effect of anaerobic pregrowth on the inhibition of molybdate reduction by added nitrate indicates that in vivo nitrate reduction responds to growth conditions in the same manner as biotin sulfoxide reductase does [26].
  • In the presence of 10 mM molybdate ion, we are able to detect the appearance of a [6,7-3H]-17,21-dimethyl-19-nor-4,9-pregnadiene-3,20-dione-([3H]R5020) binding moiety in human prostatic cytosol which sedimented at approximately 8S in a glycerol density gradient [27].
  • Ah receptor in human placenta: stabilization by molybdate and characterization of binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin, 3-methylcholanthrene, and benzo(a)pyrene [28].
  • These observations support the proposal that molybdate and tungstate are interacting through a reversible association with the glucocorticoid receptor itself [29].
  • Vanadate (1 mM) and molybdate (100 microM) increased insulin-dependent phosphorylation of pp160 by 3-fold when tested separately and 7-fold in combination [30].
 

Gene context of dioxido-dioxo-molybdenum

  • However, inclusion of 20 mM molybdate in the homogenizing buffer did significantly protect unliganded Ah receptor from thermal inactivation at 20 degrees C and from KCl-induced loss of ligand-binding ability [31].
  • In contrast, treatment of permeabilized cells with orthovanadate, vanadyl sulfate, molybdate, and tungstate at the same range of concentrations does not result in the accumulation of activated Stat1 alpha molecules in the absence of ligand [32].
  • Expression of modA and modBC was induced by starvation for molybdate [3].
  • In addition, we demonstrate that AhR/ARNT dimerization, but not nuclear translocation of the AhR, is inhibited by molybdate [33].
  • Mutant constructs containing deletions of secondary structural elements from the N- and C-termini of Cdk2 were prepared and assayed for their ability to coadsorb Hsp90 and Cdc37 in a salt-stable high-affinity manner with and without the addition of molybdate [34].
 

Analytical, diagnostic and therapeutic context of dioxido-dioxo-molybdenum

  • (i) Molybdate and modulator inhibit receptor activation as measured by DNA-cellulose binding, DEAE-cellulose chromatography, and Sepharose 4B gel filtration [35].
  • Molybdate was an essential buffer component for receptor stabilization during cell fractionation and sedimentation analysis [36].
  • After gel filtration in the presence and absence of molybdate, the per cent of labeled receptors binding to DNA-cellulose was 57 +/- 10% and 83 +/- 1%, respectively [37].
  • After filtration in the presence and absence of molybdate, the S20,w of labeled receptors was 4.2 +/- 0.2 and 4.4 +/- 0.1 S, respectively [37].
  • To investigate this process we have characterized cytoplasmic complexes formed in rat thymocytes at 0 and 37 degrees C. Complexes in cytosols stabilized with molybdate were analyzed by sucrose gradient centrifugation and by chromatography on DNA-cellulose, DEAE-cellulose, and agarose gels [38].

References

  1. The high-resolution crystal structure of the molybdate-dependent transcriptional regulator (ModE) from Escherichia coli: a novel combination of domain folds. Hall, D.R., Gourley, D.G., Leonard, G.A., Duke, E.M., Anderson, L.A., Boxer, D.H., Hunter, W.N. EMBO J. (1999) [Pubmed]
  2. Identification of candidate cancer chemopreventive agents and their evaluation in animal models and human clinical trials: a review. Boone, C.W., Kelloff, G.J., Malone, W.E. Cancer Res. (1990) [Pubmed]
  3. Molybdate transport and its effect on nitrogen utilization in the cyanobacterium Anabaena variabilis ATCC 29413. Zahalak, M., Pratte, B., Werth, K.J., Thiel, T. Mol. Microbiol. (2004) [Pubmed]
  4. Two crystal structures of the cytoplasmic molybdate-binding protein ModG suggest a novel cooperative binding mechanism and provide insights into ligand-binding specificity. Delarbre, L., Stevenson, C.E., White, D.J., Mitchenall, L.A., Pau, R.N., Lawson, D.M. J. Mol. Biol. (2001) [Pubmed]
  5. Human breast tumor estrogen receptor: effects of molybdate and electrophoretic analyses. Miller, L.K., Tuazon, F.B., Niu, E.M., Sherman, M.R. Endocrinology (1981) [Pubmed]
  6. Characterization and stabilization of progesterone receptors in human benign prostatic hypertrophy. Bashirelahi, N., Felder, C.C., Young, J.D. J. Steroid Biochem. (1983) [Pubmed]
  7. Analysis of regulation of Klebsiella pneumoniae nitrogen fixation (nif) gene cluster with gene fusions. Dixon, R., Eady, R.R., Espin, G., Hill, S., Iaccarino, M., Kahn, D., Merrick, M. Nature (1980) [Pubmed]
  8. Activation of p42 MAP kinase and the release of oocytes from cell cycle arrest. Shibuya, E.K., Boulton, T.G., Cobb, M.H., Ruderman, J.V. EMBO J. (1992) [Pubmed]
  9. The common 90-kd protein component of non-transformed '8S' steroid receptors is a heat-shock protein. Catelli, M.G., Binart, N., Jung-Testas, I., Renoir, J.M., Baulieu, E.E., Feramisco, J.R., Welch, W.J. EMBO J. (1985) [Pubmed]
  10. Effects of molybdate and endogenous inhibitors on steroid-receptor inactivation, transformation, and translocation. Dahmer, M.K., Housley, P.R., Pratt, W.B. Annu. Rev. Physiol. (1984) [Pubmed]
  11. Mol- mutants of Klebsiella pneumoniae requiring high levels of molybdate for nitrogenase activity. Imperial, J., Ugalde, R.A., Shah, V.K., Brill, W.J. J. Bacteriol. (1985) [Pubmed]
  12. Identification of a new gene, molR, essential for utilization of molybdate by Escherichia coli. Lee, J.H., Wendt, J.C., Shanmugam, K.T. J. Bacteriol. (1990) [Pubmed]
  13. Physiological and biochemical characterization of the soluble formate dehydrogenase, a molybdoenzyme from Alcaligenes eutrophus. Friedebold, J., Bowien, B. J. Bacteriol. (1993) [Pubmed]
  14. A Na+:H+ antiporter and a molybdate transporter are essential for arsenite oxidation in Agrobacterium tumefaciens. Kashyap, D.R., Botero, L.M., Lehr, C., Hassett, D.J., McDermott, T.R. J. Bacteriol. (2006) [Pubmed]
  15. The iron-binding properties of aminochelin, the mono(catecholamide) siderophore of Azotobacter vinelandii. Khodr, H.H., Hider, R.C., Duhme-Klair, A.K. J. Biol. Inorg. Chem. (2002) [Pubmed]
  16. Crystal structure of the molybdate binding protein ModA. Hu, Y., Rech, S., Gunsalus, R.P., Rees, D.C. Nat. Struct. Biol. (1997) [Pubmed]
  17. Passive acquisition of ligand by the MopII molbindin from Clostridium pasteurianum: structures of apo and oxyanion-bound forms. Schüttelkopf, A.W., Harrison, J.A., Boxer, D.H., Hunter, W.N. J. Biol. Chem. (2002) [Pubmed]
  18. The Mechanism of nucleotide-assisted molybdenum insertion into molybdopterin. A novel route toward metal cofactor assembly. Llamas, A., Otte, T., Multhaup, G., Mendel, R.R., Schwarz, G. J. Biol. Chem. (2006) [Pubmed]
  19. Properties of the periplasmic ModA molybdate-binding protein of Escherichia coli. Rech, S., Wolin, C., Gunsalus, R.P. J. Biol. Chem. (1996) [Pubmed]
  20. An analysis of the binding of repressor protein ModE to modABCD (molybdate transport) operator/promoter DNA of Escherichia coli. Grunden, A.M., Self, W.T., Villain, M., Blalock, J.E., Shanmugam, K.T. J. Biol. Chem. (1999) [Pubmed]
  21. Physicochemical and genetic evidence for specific antiestrogen binding sites. Faye, J.C., Jozan, S., Redeuilh, G., Baulieu, E.E., Bayard, F. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  22. Binding of heat shock proteins to the avian progesterone receptor. Kost, S.L., Smith, D.F., Sullivan, W.P., Welch, W.J., Toft, D.O. Mol. Cell. Biol. (1989) [Pubmed]
  23. Degradation without apparent change in size of molybdate-stabilized nonactivated glucocorticoid-receptor complexes in rat thymus cytosol. Mendel, D.B., Holbrook, N.J., Bodwell, J.E. J. Biol. Chem. (1985) [Pubmed]
  24. Vanadate inhibits the ATP-dependent degradation of proteins in reticulocytes without affecting ubiquitin conjugation. Tanaka, K., Waxman, L., Goldberg, A.L. J. Biol. Chem. (1984) [Pubmed]
  25. Activation of adenylate cyclase by molybdate. Richards, J.M., Swislocki, N.I. J. Biol. Chem. (1979) [Pubmed]
  26. Molybdate reduction by Escherichia coli K-12 and its chl mutants. Campbell, A.M., del Campillo-Campbell, A., Villaret, D.B. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  27. Stabilization of 8S progesterone receptor from human prostate in the presence of molybdate ion. Bevins, C.L., Bashirelahi, N. Cancer Res. (1980) [Pubmed]
  28. Ah receptor in human placenta: stabilization by molybdate and characterization of binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin, 3-methylcholanthrene, and benzo(a)pyrene. Manchester, D.K., Gordon, S.K., Golas, C.L., Roberts, E.A., Okey, A.B. Cancer Res. (1987) [Pubmed]
  29. Molybdate inhibition of glucocorticoid receptor inactivation and transformation. Leach, K.L., Dahmer, M.K., Hammond, N.D., Sando, J.J., Pratt, W.B. J. Biol. Chem. (1979) [Pubmed]
  30. Differential dephosphorylation of the insulin receptor and its 160-kDa substrate (pp160) in rat adipocytes. Mooney, R.A., Bordwell, K.L. J. Biol. Chem. (1992) [Pubmed]
  31. Hepatic Ah receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin. Partial stabilization by molybdate. Denison, M.S., Vella, L.M., Okey, A.B. J. Biol. Chem. (1986) [Pubmed]
  32. Roles of protein-tyrosine phosphatases in Stat1 alpha-mediated cell signaling. Haque, S.J., Flati, V., Deb, A., Williams, B.R. J. Biol. Chem. (1995) [Pubmed]
  33. Role of heat shock protein 90 dissociation in mediating agonist-induced activation of the aryl hydrocarbon receptor. Heid, S.E., Pollenz, R.S., Swanson, H.I. Mol. Pharmacol. (2000) [Pubmed]
  34. Cdk2: a genuine protein kinase client of Hsp90 and Cdc37. Prince, T., Sun, L., Matts, R.L. Biochemistry (2005) [Pubmed]
  35. Evidence that the modulator of the glucocorticoid-receptor complex is the endogenous molybdate factor. Bodine, P.V., Litwack, G. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  36. Nuclear uptake of 1,25-dihydroxy[3H]cholecalciferol in dispersed fibroblasts cultured from normal human skin. Eil, C., Marx, S.J. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  37. Activation of the rat liver cytosol glucocorticoid receptor by sephacryl S-300 filtration in the presence and absence of molybdate. Physical properties of the receptor and evidence for an activation inhibitor. Distelhorst, C.W., Benutto, B.M. J. Biol. Chem. (1985) [Pubmed]
  38. Characterization of nonactivated and activated glucocorticoid-receptor complexes from intact rat thymus cells. Holbrook, N.J., Bodwell, J.E., Jeffries, M., Munck, A. J. Biol. Chem. (1983) [Pubmed]
 
WikiGenes - Universities