The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Klebsiella


High impact information on Klebsiella


Chemical compound and disease context of Klebsiella


Biological context of Klebsiella

  • Pentitol metabolism in Klebsiella aerogenes is encoded by continuous ribitol (rbt) and D-arabitol (dal) operons transcribed in bipolar fashion and sandwiched between long stretches of homologous DNA [13].
  • We have determined the nucleotide sequences of two genes from Klebsiella pneumoniae, nifA, the nif-specific activator of transcription and ntrC, the bifunctional regulatory protein involved in 'nitrogen control'. These sequences differ significantly from those previously published [14].
  • Seven pilus chaperone sequences from Escherichia coli, Haemophilus influenzae and Klebsiella pneumoniae were aligned and their consensus sequence was superimposed onto the known three-dimensional structure of PapD, a representative member of the family [15].
  • OBJECTIVE: To describe the epidemiology, antimicrobial susceptibility, and control of widespread ceftazidime-resistant Klebsiella pneumoniae infections in a North American hospital and circumstances that led to delayed detection [16].
  • Amino acid sequence of the Fv region of a human monoclonal IgM (protein WEA) with antibody activity against 3,4-pyruvylated galactose in Klebsiella polysaccharides K30 and K33 [17].

Anatomical context of Klebsiella


Gene context of Klebsiella

  • To test this, we used a model of Klebsiella pneumoniae lung infection in mice genetically deficient in IL-17R or in mice overexpressing a soluble IL-17R [23].
  • The cloned Azotobacter genes also complemented Klebsiella pneumoniae mutants and hybridized to K. pneumoniae ntrA, ntrC and glnA gene probes [24].
  • A groEL mutant of E.coli, transformed with the Klebsiella pneumoniae nif gene cluster, failed to accumulate nitrogenase components [Govezensky et al. (1991) J. Bacteriol., 173, 6339-6346] [25].
  • In contrast to TLR4-deficient mice, SPRET/Ei mice resist both LPS and sepsis induced with Klebsiella pneumoniae [26].
  • Our studies indicate that 1) IL-10 is produced during Klebsiella pneumonia; and 2) inhibition of IL-10 bioactivity in vivo results in enhanced bacterial clearance, increased expression of proinflammatory cytokines, and prolonged survival [27].

Analytical, diagnostic and therapeutic context of Klebsiella

  • 74 overlapping peptides of varying lengths from Klebsiella pneumoniae nitrogenase reductase (residues 181-199) and from the HLA B27.1 molecule (residues 65-85) were synthesized and tested by ELISA against sera from HLA B27+ ankylosing spondylitis (AS) patients, and sera from HLA B27+ and HLA B27- healthy first-degree relatives [28].
  • Here we have studied the protein from Azotobacter vinelandii and Klebsiella pneumoniae with Mössbauer and EPR spectroscopies, with the following results: when the MoFe protein is oxidized by addition of stoichiometric amounts (6-8 equivalents) of dissolved thionin, the well characterized P-cluster state Pox results [29].
  • However, these Klebsiella polysaccharides did not react in immunodiffusion with horse or with rabbit pneumococcal 19F and 19A typing antisera [30].
  • Cloning and sequence analysis of gyrA gene of Klebsiella pneumoniae [31].
  • Crystallization of a DNA and N-acetylserine binding fragment (residues 1 to 233) of Klebsiella aerogenes CysB protein, a member of the LysR family [32].


  1. Mice lacking neutrophil elastase reveal impaired host defense against gram negative bacterial sepsis. Belaaouaj, A., McCarthy, R., Baumann, M., Gao, Z., Ley, T.J., Abraham, S.N., Shapiro, S.D. Nat. Med. (1998) [Pubmed]
  2. Designing appropriate therapy in the treatment of gram-negative bacillary meningitis. Corrado, M.L., Gombert, M.E., Cherubin, C.E. JAMA (1982) [Pubmed]
  3. Klebsiella pneumoniae meningitis. Intravenous trimethoprim-sulfamethoxazole treatment. Hickstein, D.D., Dillon, J.T. JAMA (1982) [Pubmed]
  4. False-positive cryptococcal antigen test and cervical prevertebral abscess. MacKinnon, S., Kane, J.G., Parker, R.H. JAMA (1978) [Pubmed]
  5. Clinical and molecular epidemiology of acinetobacter infections sensitive only to polymyxin B and sulbactam. Go, E.S., Urban, C., Burns, J., Kreiswirth, B., Eisner, W., Mariano, N., Mosinka-Snipas, K., Rahal, J.J. Lancet (1994) [Pubmed]
  6. Nitrogen fixation gene (nifL) involved in oxygen regulation of nitrogenase synthesis in K. pneumoniae. Hill, S., Kennedy, C., Kavanagh, E., Goldberg, R.B., Hanau, R. Nature (1981) [Pubmed]
  7. OmpA targets dendritic cells, induces their maturation and delivers antigen into the MHC class I presentation pathway. Jeannin, P., Renno, T., Goetsch, L., Miconnet, I., Aubry, J.P., Delneste, Y., Herbault, N., Baussant, T., Magistrelli, G., Soulas, C., Romero, P., Cerottini, J.C., Bonnefoy, J.Y. Nat. Immunol. (2000) [Pubmed]
  8. Class restriction of cephalosporin use to control total cephalosporin resistance in nosocomial Klebsiella. Rahal, J.J., Urban, C., Horn, D., Freeman, K., Segal-Maurer, S., Maurer, J., Mariano, N., Marks, S., Burns, J.M., Dominick, D., Lim, M. JAMA (1998) [Pubmed]
  9. Intrathecal amikacin administration. Use in the treatment of gentamicin-resistant Klebsiella pneumoniae meningitis. Hamory, B., Ignatiadis, P., Sande, M.A. JAMA (1976) [Pubmed]
  10. Immunochemical similarities between monoclonal antibacterial Waldenstrom's macroglobulins and monoclonal anti-DNA lupus autoantibodies. Naparstek, Y., Duggan, D., Schattner, A., Madaio, M.P., Goni, F., Frangione, B., Stollar, B.D., Kabat, E.A., Schwartz, R.S. J. Exp. Med. (1985) [Pubmed]
  11. Human monoclonal macroglobulins with specificity for Klebsiella K polysaccharides that contain 3,4-pyruvylated-D-galactose and 4,6-pyruvylated-D-galactose. Kabat, E.A., Liao, J., Bretting, H., Franklin, E.C., Geltner, D., Frangione, B., Koshland, M.E., Shyong, J., Osserman, E.F. J. Exp. Med. (1980) [Pubmed]
  12. Transferable enzymatic resistance to third-generation cephalosporins during nosocomial outbreak of multiresistant Klebsiella pneumoniae. Brun-Buisson, C., Legrand, P., Philippon, A., Montravers, F., Ansquer, M., Duval, J. Lancet (1987) [Pubmed]
  13. Structure of wild-type and mutant repressors and of the control region of the rbt operon of Klebsiella aerogenes. Wu, J., Anderton-Loviny, T., Smith, C.A., Hartley, B.S. EMBO J. (1985) [Pubmed]
  14. Sequence and domain relationships of ntrC and nifA from Klebsiella pneumoniae: homologies to other regulatory proteins. Drummond, M., Whitty, P., Wootton, J. EMBO J. (1986) [Pubmed]
  15. Conserved immunoglobulin-like features in a family of periplasmic pilus chaperones in bacteria. Holmgren, A., Kuehn, M.J., Brändén, C.I., Hultgren, S.J. EMBO J. (1992) [Pubmed]
  16. Nosocomial outbreak of Klebsiella infection resistant to late-generation cephalosporins. Meyer, K.S., Urban, C., Eagan, J.A., Berger, B.J., Rahal, J.J. Ann. Intern. Med. (1993) [Pubmed]
  17. Amino acid sequence of the Fv region of a human monoclonal IgM (protein WEA) with antibody activity against 3,4-pyruvylated galactose in Klebsiella polysaccharides K30 and K33. Goñi, F., Frangione, B. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  18. Characterization of a factor(s) present in Klebsiella culture filtrates that specifically modifies an HLA-B27-associated cell-surface component. Geczy, A.F., Alexander, K., Bashir, H.V., Edmonds, J.P. J. Exp. Med. (1980) [Pubmed]
  19. Stable periplasmic secretion intermediate in the general secretory pathway of Escherichia coli. Poquet, I., Faucher, D., Pugsley, A.P. EMBO J. (1993) [Pubmed]
  20. Leukotrienes enhance the bactericidal activity of alveolar macrophages against Klebsiella pneumoniae through the activation of NADPH oxidase. Serezani, C.H., Aronoff, D.M., Jancar, S., Mancuso, P., Peters-Golden, M. Blood (2005) [Pubmed]
  21. Direct bacterial protein PAMP recognition by human NK cells involves TLRs and triggers alpha-defensin production. Chalifour, A., Jeannin, P., Gauchat, J.F., Blaecke, A., Malissard, M., N'Guyen, T., Thieblemont, N., Delneste, Y. Blood (2004) [Pubmed]
  22. Regulation of matrilysin expression in airway epithelial cells by Pseudomonas aeruginosa flagellin. López-Boado, Y.S., Wilson, C.L., Parks, W.C. J. Biol. Chem. (2001) [Pubmed]
  23. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. Ye, P., Rodriguez, F.H., Kanaly, S., Stocking, K.L., Schurr, J., Schwarzenberger, P., Oliver, P., Huang, W., Zhang, P., Zhang, J., Shellito, J.E., Bagby, G.J., Nelson, S., Charrier, K., Peschon, J.J., Kolls, J.K. J. Exp. Med. (2001) [Pubmed]
  24. Regulation of nitrogen metabolism in Azotobacter vinelandii: isolation of ntr and glnA genes and construction of ntr mutants. Toukdarian, A., Kennedy, C. EMBO J. (1986) [Pubmed]
  25. A novel multicopy suppressor of a groEL mutation includes two nested open reading frames transcribed from different promoters. Greener, T., Govezensky, D., Zamir, A. EMBO J. (1993) [Pubmed]
  26. The wild-derived inbred mouse strain SPRET/Ei is resistant to LPS and defective in IFN-beta production. Mahieu, T., Park, J.M., Revets, H., Pasche, B., Lengeling, A., Staelens, J., Wullaert, A., Vanlaere, I., Hochepied, T., van Roy, F., Karin, M., Libert, C. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  27. Neutralization of IL-10 increases survival in a murine model of Klebsiella pneumonia. Greenberger, M.J., Strieter, R.M., Kunkel, S.L., Danforth, J.M., Goodman, R.E., Standiford, T.J. J. Immunol. (1995) [Pubmed]
  28. Antibody activity in ankylosing spondylitis sera to two sites on HLA B27.1 at the MHC groove region (within sequence 65-85), and to a Klebsiella pneumoniae nitrogenase reductase peptide (within sequence 181-199). Ewing, C., Ebringer, R., Tribbick, G., Geysen, H.M. J. Exp. Med. (1990) [Pubmed]
  29. Mössbauer studies of solid thionin-oxidized MoFe protein of nitrogenase. Lindahl, P.A., Papaefthymiou, V., Orme-Johnson, W.H., Münck, E. J. Biol. Chem. (1988) [Pubmed]
  30. Immunochemical relations between pneumococcal group 19 and Klebsiella capsular polysaccharides. Lee, C.J., Koizumi, K. J. Immunol. (1981) [Pubmed]
  31. Cloning and sequence analysis of gyrA gene of Klebsiella pneumoniae. Dimri, G.P., Das, H.K. Nucleic Acids Res. (1990) [Pubmed]
  32. Crystallization of a DNA and N-acetylserine binding fragment (residues 1 to 233) of Klebsiella aerogenes CysB protein, a member of the LysR family. Tyrrell, R., Davies, G.J., Wilson, K.S., Wilkinson, A.J. J. Mol. Biol. (1994) [Pubmed]
WikiGenes - Universities