The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Glucose-1-phosphotransferase and N-acetylglucosamine-1-phosphotransferase have distinct acceptor specificities.

UDP-glucose:glycoprotein glucose-1-phosphotransferase (Glc-phosphotransferase) catalyzes the transfer of alpha Glc-1-P from UDP-Glc to endoglycosidase H-sensitive oligosaccharides on acceptor glycoproteins. We have previously demonstrated that Glc-phosphotransferase was specific for UDP-Glc as its nucleotide sugar substrate and thus appeared to be distinct from UDP-N-acetylglucosamine:glycoprotein N-acetylglucosamine-1-phosphotransferase (GlcNAc-phosphotransferase), an enzyme specific for lysosomally destined acceptor glycoproteins. Here, sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiographs of endogenous acceptor glycoproteins in embryonic chick neural retina homogenates labeled by the presence of [beta-32P]UDP-Glc were shown to be distinct from those labeled by [beta-32P]UDP-GlcNAc, indicating that the two enzymatic activities recognize different populations of endogenous glycoproteins. To further probe the acceptor specificities of these enzymes, three glycoproteins known to be exogenous acceptors for GlcNAc-phosphotransferase were included in assays for Glc-phosphotransferase from retinal homogenates. Cathepsin D and beta-N-acetylhexosaminidase had no significant effects on phosphoglucose incorporation. Uteroferrin, an acid phosphatase, had a pronounced inhibitory effect on incorporation from UDP-Glc, and subsequent experiments suggested that phosphorylation of the Glc-phosphotransferase or another protein may be necessary for maximal activity to be seen. Also, I-cells, which have previously been shown to possess no GlcNAc-phosphotransferase activity, and control human fibroblasts were assayed for both Glc-phosphotransferase and GlcNAc-phosphotransferase. GlcNAc-phosphotransferase activity was observed only in control cells, whereas Glc-phosphotransferase was observed in both I-cells and controls at similar specific activities.[1]


WikiGenes - Universities