The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

UDPG     [[(2R,3S,4R,5R)-5-(2,4- dioxopyrimidin-1...

Synonyms: UDPglucose, UDP-Glc, UDP-glucose, UDP-D-glucose, CHEMBL375951, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Uridine diphosphoglucose

  • Since eukaryotic UDP-Glc pyrophosphorylases appear to be completely unrelated to their prokaryotic counterparts, we postulate that GalU may be an appropriate target for the search of new drugs to control the pathogenicity of bacteria like pneumococcus and S. pyogenes [1].
  • Here we demonstrate that Bacillus subtilis YwqD not only autophosphorylates at Tyr-228, but that it also phosphorylates the two UDP-glucose dehydrogenases (UDP-glucose DHs) YwqF and TuaD at a tyrosine residue [2].
  • Biochemical and autoradiographic evidence show both glycogen synthesis and the presence of glycogen synthase (UDP glucose [UDPG]: glycogen 4-alpha-D-glucosyltransferase; EC 2.4.1.11) in isolated nuclei of Ehrlich-Lettré mouse ascites tumor cells of the mutant subline HD33 [3].
  • Here we present the 2.0 A structures of the E. coli OtsA in complex with either UDP-Glc or the non-transferable analogue UDP-2-deoxy-2-fluoroglucose [4].
  • Clostridium difficile toxins A and B are cation-dependent UDP-glucose hydrolases with differing catalytic activities [5].
 

Psychiatry related information on Uridine diphosphoglucose

  • Since these two reactions could proceed under the same conditions, a one-pot synthesis of UDP-D-glucose with ATP regeneration was designed from easily available starting materials, and conversion up to 40% by HPLC peak integration was achieved given a reaction time of 4 h [6].
 

High impact information on Uridine diphosphoglucose

 

Chemical compound and disease context of Uridine diphosphoglucose

 

Biological context of Uridine diphosphoglucose

  • The present study addresses phenotypic changes in Chinese hamster ovary mutant cell line ldlD deficient in UDP-Glc 4-epimerase and expressing CD82 or CD9 by cDNA transfection [17].
  • These results and a discussion of the utility of 5N3UDP-Glc for detecting UDP-Glc binding proteins and isolating active site peptides are presented [18].
  • Dependence of the enzyme on UDP-glucose followed Michaelis-Menten kinetics while the other hydrophobic substrate dioleoylglycerol stimulated the enzyme by an activating, potentially cooperative mechanism [19].
  • This label rapidly disappears if excess unlabeled UDP-Glc, or UDP, is added, indicating that the glycosylation is reversible, and suggesting that the glycosylated polypeptides might be intermediates in a glycosyl transfer reaction [20].
  • Uteroferrin, an acid phosphatase, had a pronounced inhibitory effect on incorporation from UDP-Glc, and subsequent experiments suggested that phosphorylation of the Glc-phosphotransferase or another protein may be necessary for maximal activity to be seen [21].
 

Anatomical context of Uridine diphosphoglucose

  • Analysis of transferrin folding in briefly heat-treated microsomes revealed that UDP-glucose was also effective in elimination of heat-induced misfolding [11].
  • Under identical conditions, UDP-glucose had no effect on sperm binding to the zona pellucida [22].
  • Sucrose synthase (SuSy; EC 2.4.1.13; sucrose + UDP reversible UDPglucose + fructose) has always been studied as a cytoplasmic enzyme in plant cells where it serves to degrade sucrose and provide carbon for respiration and synthesis of cell wall polysaccharides and starch [23].
  • However, detailed analysis of their labeling patterns showed a striking divergence, implying that there must be compartmentation of the UDP-glucose pools leading to each of these end products, either because they are made in separate compartments within the same cell or because each is made in different hepatocyte populations [24].
  • 2) When these astrocytes are fed with glucose, proglycogen is synthesized from the glycogenin primer by a glycogen-synthase-like UDPglucose transglucosylase activity (proglycogen synthase) distinct from the well-recognized glycogen synthase, and synthesis stops at this point [25].
 

Associations of Uridine diphosphoglucose with other chemical compounds

 

Gene context of Uridine diphosphoglucose

  • We propose that UGT1 may transfer UDP-glucose from sucrose synthase to the callose synthase and thus help form a substrate channel for the synthesis of callose at the forming cell plate [31].
  • The SQD1 enzyme is believed to be involved in the biosynthesis of the sulfoquinovosyl headgroup of plant sulfolipids, catalyzing the transfer of SO(3)(-) to UDP-glucose [32].
  • We used crystal coordinates for Streptococcus pyogenes UGDH in complex with NAD+ cofactor and UDP-glucose substrate to generate a model of the enzyme active site [33].
  • A 63-kDa fragment of toxin B covering the first 546 amino acid residues glucosylated Rho, Rac, and Cdc42, but not Ras, by using UDP-glucose as a cosubstrate [34].
  • We report the functional characterization of the galF gene of strain VW187 (Escherichia coli O7:K1), which encodes a polypeptide displaying structural features common to bacterial UDP-glucose pyrophosphorylases, including the E. coli GalU protein [35].
 

Analytical, diagnostic and therapeutic context of Uridine diphosphoglucose

References

  1. Characterization of the galU gene of Streptococcus pneumoniae encoding a uridine diphosphoglucose pyrophosphorylase: a gene essential for capsular polysaccharide biosynthesis. Mollerach, M., López, R., García, E. J. Exp. Med. (1998) [Pubmed]
  2. Transmembrane modulator-dependent bacterial tyrosine kinase activates UDP-glucose dehydrogenases. Mijakovic, I., Poncet, S., Boël, G., Mazé, A., Gillet, S., Jamet, E., Decottignies, P., Grangeasse, C., Doublet, P., Le Maréchal, P., Deutscher, J. EMBO J. (2003) [Pubmed]
  3. Role of nuclear glycogen synthase and cytoplasmic UDP glucose pyrophosphorylase in the biosynthesis of nuclear glycogen in HD33 Ehrlich-Lettré ascites tumor cells. Granzow, C., Kopun, M., Zimmermann, H.P. J. Cell Biol. (1981) [Pubmed]
  4. The donor subsite of trehalose-6-phosphate synthase: binary complexes with UDP-glucose and UDP-2-deoxy-2-fluoro-glucose at 2 A resolution. Gibson, R.P., Tarling, C.A., Roberts, S., Withers, S.G., Davies, G.J. J. Biol. Chem. (2004) [Pubmed]
  5. Clostridium difficile toxins A and B are cation-dependent UDP-glucose hydrolases with differing catalytic activities. Ciesla, W.P., Bobak, D.A. J. Biol. Chem. (1998) [Pubmed]
  6. One-pot enzymatic synthesis of UDP-D-glucose from UMP and glucose-1-phosphate using an ATP regeneration system. Lee, H.C., Lee, S.D., Sohng, J.K., Liou, K. J. Biochem. Mol. Biol. (2004) [Pubmed]
  7. A baculovirus blocks insect molting by producing ecdysteroid UDP-glucosyl transferase. O'Reilly, D.R., Miller, L.K. Science (1989) [Pubmed]
  8. Hepatic gluconeogenic fluxes and glycogen turnover during fasting in humans. A stable isotope study. Hellerstein, M.K., Neese, R.A., Linfoot, P., Christiansen, M., Turner, S., Letscher, A. J. Clin. Invest. (1997) [Pubmed]
  9. The roles of insulin and glucagon in the regulation of hepatic glycogen synthesis and turnover in humans. Roden, M., Perseghin, G., Petersen, K.F., Hwang, J.H., Cline, G.W., Gerow, K., Rothman, D.L., Shulman, G.I. J. Clin. Invest. (1996) [Pubmed]
  10. Glycogen synthase activity is reduced in cultured skeletal muscle cells of non-insulin-dependent diabetes mellitus subjects. Biochemical and molecular mechanisms. Henry, R.R., Ciaraldi, T.P., Abrams-Carter, L., Mudaliar, S., Park, K.S., Nikoulina, S.E. J. Clin. Invest. (1996) [Pubmed]
  11. Promotion of transferrin folding by cyclic interactions with calnexin and calreticulin. Wada, I., Kai, M., Imai, S., Sakane, F., Kanoh, H. EMBO J. (1997) [Pubmed]
  12. A cellular UDP-glucose deficiency causes overexpression of glucose/oxygen-regulated proteins independent of the endoplasmic reticulum stress elements. Flores-Diaz, M., Higuita, J.C., Florin, I., Okada, T., Pollesello, P., Bergman, T., Thelestam, M., Mori, K., Alape-Giron, A. J. Biol. Chem. (2004) [Pubmed]
  13. Identification of the uridine 5'-diphosphoglucose (UDP-Glc) binding subunit of cellulose synthase in Acetobacter xylinum using the photoaffinity probe 5-azido-UDP-Glc. Lin, F.C., Brown, R.M., Drake, R.R., Haley, B.E. J. Biol. Chem. (1990) [Pubmed]
  14. Expression of the Streptococcus pneumoniae type 3 synthase in Escherichia coli. Assembly of type 3 polysaccharide on a lipid primer. Cartee, R.T., Forsee, W.T., Jensen, J.W., Yother, J. J. Biol. Chem. (2001) [Pubmed]
  15. Identification of a hard surface contact-induced gene in Colletotrichum gloeosporioides conidia as a sterol glycosyl transferase, a novel fungal virulence factor. Kim, Y.K., Wang, Y., Liu, Z.M., Kolattukudy, P.E. Plant J. (2002) [Pubmed]
  16. Dramatic differences in the binding of UDP-galactose and UDP-glucose to UDP-galactose 4-epimerase from Escherichia coli. Thoden, J.B., Holden, H.M. Biochemistry (1998) [Pubmed]
  17. Motility inhibition and apoptosis are induced by metastasis-suppressing gene product CD82 and its analogue CD9, with concurrent glycosylation. Ono, M., Handa, K., Withers, D.A., Hakomori, S. Cancer Res. (1999) [Pubmed]
  18. Synthesis and properties of 5-azido-UDP-glucose. Development of photoaffinity probes for nucleotide diphosphate sugar binding sites. Drake, R.R., Evans, R.K., Wolf, M.J., Haley, B.E. J. Biol. Chem. (1989) [Pubmed]
  19. Lipid dependence and basic kinetics of the purified 1,2-diacylglycerol 3-glucosyltransferase from membranes of Acholeplasma laidlawii. Karlsson, O.P., Dahlqvist, A., Vikström, S., Wieslander, A. J. Biol. Chem. (1997) [Pubmed]
  20. Plant polypeptides reversibly glycosylated by UDP-glucose. Possible components of Golgi beta-glucan synthase in pea cells. Dhugga, K.S., Ulvskov, P., Gallagher, S.R., Ray, P.M. J. Biol. Chem. (1991) [Pubmed]
  21. Glucose-1-phosphotransferase and N-acetylglucosamine-1-phosphotransferase have distinct acceptor specificities. Hiller, A.M., Koro, L.A., Marchase, R.B. J. Biol. Chem. (1987) [Pubmed]
  22. Receptor function of mouse sperm surface galactosyltransferase during fertilization. Lopez, L.C., Bayna, E.M., Litoff, D., Shaper, N.L., Shaper, J.H., Shur, B.D. J. Cell Biol. (1985) [Pubmed]
  23. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Amor, Y., Haigler, C.H., Johnson, S., Wainscott, M., Delmer, D.P. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  24. Glycoconjugates as noninvasive probes of intrahepatic metabolism: pathways of glucose entry into compartmentalized hepatic UDP-glucose pools during glycogen accumulation. Hellerstein, M.K., Greenblatt, D.J., Munro, H.N. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  25. Glycogen synthesis in the astrocyte: from glycogenin to proglycogen to glycogen. Lomako, J., Lomako, W.M., Whelan, W.J., Dombro, R.S., Neary, J.T., Norenberg, M.D. FASEB J. (1993) [Pubmed]
  26. Skeletal muscle glycogenolysis is more sensitive to insulin than is glucose transport/phosphorylation. Relation to the insulin-mediated inhibition of hepatic glucose production. Rossetti, L., Hu, M. J. Clin. Invest. (1993) [Pubmed]
  27. A reversibly glycosylated polypeptide (RGP1) possibly involved in plant cell wall synthesis: purification, gene cloning, and trans-Golgi localization. Dhugga, K.S., Tiwari, S.C., Ray, P.M. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  28. Renaturation and localization of enzymes in polyacrylamide gels: studies with UDPglucose pyrophosphorylase of Dictyostelium. Manrow, R.E., Dottin, R.P. Proc. Natl. Acad. Sci. U.S.A. (1980) [Pubmed]
  29. Mutations in the phosphoglucose isomerase gene can lead to marked alterations in cellular ATP levels in cultured fibroblasts exposed to simple nutrient shifts. Plesner, P., Ullrey, D.B., Kalckar, H.M. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  30. Mutational Analysis of the Medicago Glycosyltransferase UGT71G1 Reveals Residues That Control Regioselectivity for (Iso)flavonoid Glycosylation. He, X.Z., Wang, X., Dixon, R.A. J. Biol. Chem. (2006) [Pubmed]
  31. A novel UDP-glucose transferase is part of the callose synthase complex and interacts with phragmoplastin at the forming cell plate. Hong, Z., Zhang, Z., Olson, J.M., Verma, D.P. Plant Cell (2001) [Pubmed]
  32. Crystal structure of SQD1, an enzyme involved in the biosynthesis of the plant sulfolipid headgroup donor UDP-sulfoquinovose. Mulichak, A.M., Theisen, M.J., Essigmann, B., Benning, C., Garavito, R.M. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  33. Characterization of human UDP-glucose dehydrogenase. CYS-276 is required for the second of two successive oxidations. Sommer, B.J., Barycki, J.J., Simpson, M.A. J. Biol. Chem. (2004) [Pubmed]
  34. Localization of the glucosyltransferase activity of Clostridium difficile toxin B to the N-terminal part of the holotoxin. Hofmann, F., Busch, C., Prepens, U., Just, I., Aktories, K. J. Biol. Chem. (1997) [Pubmed]
  35. The GalF protein of Escherichia coli is not a UDP-glucose pyrophosphorylase but interacts with the GalU protein possibly to regulate cellular levels of UDP-glucose. Marolda, C.L., Valvano, M.A. Mol. Microbiol. (1996) [Pubmed]
  36. An alpha-glucose-1-phosphate phosphodiesterase is present in rat liver cytosol. Srisomsap, C., Richardson, K.L., Jay, J.C., Marchase, R.B. J. Biol. Chem. (1989) [Pubmed]
  37. Articular cartilage vesicles generate calcium pyrophosphate dihydrate-like crystals in vitro. Derfus, B.A., Rachow, J.W., Mandel, N.S., Boskey, A.L., Buday, M., Kushnaryov, V.M., Ryan, L.M. Arthritis Rheum. (1992) [Pubmed]
  38. Bacillus subtilis strain deficient for the protein-tyrosine kinase PtkA exhibits impaired DNA replication. Petranovic, D., Michelsen, O., Zahradka, K., Silva, C., Petranovic, M., Jensen, P.R., Mijakovic, I. Mol. Microbiol. (2007) [Pubmed]
  39. Site-directed mutagenesis and protein 3D-homology modelling suggest a catalytic mechanism for UDP-glucose-dependent betanidin 5-O-glucosyltransferase from Dorotheanthus bellidiformis. Hans, J., Brandt, W., Vogt, T. Plant J. (2004) [Pubmed]
  40. Cloning and characterization of the abscisic acid-specific glucosyltransferase gene from adzuki bean seedlings. Xu, Z.J., Nakajima, M., Suzuki, Y., Yamaguchi, I. Plant Physiol. (2002) [Pubmed]
 
WikiGenes - Universities