The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Product inhibition of immobilized Escherichia coli arising from mass transfer limitation.

Mass transfer-limited removal of metabolic products led to product-inhibited growth of Escherichia coli that was immobilized in a model system. Comparison of the growth kinetics of immobilized and free-living cells revealed no further physiological differences between cells in these two modes of existence beyond those manifested in the local concentrations of substrate and product. Bacteria were retained on a microporous membrane in a dense, planar aggregate and were grown anaerobically on a glucose-based minimal medium. Radioisotope labeling of the immobilized cell mass with 35S was used to determine growth kinetic parameters. Growth rates in the immobilized cell layer were measured by an autoradiographic technique which allowed comparison of the size of the growing region with the rate of cell convection caused by growth. Immobilized cell growth rates and growth yields ranged from near maximal (0.56 h-1 and 39 g of dry cell weight/mol of glucose, respectively) to substantially reduced (0.15 h-1 and 15 g/mol). The depression of these kinetic parameters was attributed to product inhibition arising from mass transfer-limited removal of acidic waste products from the cell mass. A simple one-dimensional reaction-diffusion model, which incorporated data on the product-inhibited growth kinetics of free-living cells collected in a product-limited chemostat, satisfactorily predicted product inhibition of immobilized cell growth.[1]

References

  1. Product inhibition of immobilized Escherichia coli arising from mass transfer limitation. Stewart, P.S., Robertson, C.R. Appl. Environ. Microbiol. (1988) [Pubmed]
 
WikiGenes - Universities