The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Cellular pharmacology of N,N',N''-triethylene thiophosphoramide.

N,N',N''-triethylene thiophosphoramide (Thio-TEPA) is an alkylating agent whose antineoplastic activity has been known for nearly 30 years. Human plasma pharmacokinetic studies revealed the presence of TEPA, a Thio-TEPA metabolite which after 4 h achieved plasma concentrations equal to those of the parent compound. We studied the activity of both Thio-TEPA and TEPA against murine leukemia P388 cells in culture. We found that Thio-TEPA is approximately two-fold more active than TEPA in arresting cell growth (IC50 = 2.8 microM for TEPA and 1.5 microM for Thio-TEPA). In inhibiting [3H]thymidine incorporation, Thio-TEPA and TEPA have the same activity (IC50 = 2 microM for both compounds). Experiments in which drug was removed from cell cultures which were further incubated in drug-free media, revealed that the bulk of the cell damage occurs during the first 4 h of incubation. Cell cultures exposed to 0.5 microM Thio-TEPA for 22 h fully recovered their [3H]thymidine incorporation ability after 24 h of drug-free incubation. Cells exposed to 2.5 microM Thio-TEPA for 22 h partially recovered their ability to incorporate [3H]thymidine. Cells exposed to 10 microM Thio-TEPA for 22 h did not recover their ability to incorporate [3H]thymidine. Gas liquid chromatographic analysis of the media from incubated cells showed that the concentration of Thio-TEPA remained unchanged during the incubations and that TEPA was not present. In Thio-TEPA doses ranging from 0.1 microM to 100 microM, [3H]uridine and [3H]-leucine incorporation were less affected than [3H]thymidine incorporation. This may indicate that a longer observation time may be needed to allow the DNA damage to be expressed in terms of protein or RNA synthesis.[1]

References

  1. Cellular pharmacology of N,N',N''-triethylene thiophosphoramide. Miller, B., Tenenholz, T., Egorin, M.J., Sosnovsky, G., Rao, N.U., Gutierrez, P.L. Cancer Lett. (1988) [Pubmed]
 
WikiGenes - Universities