The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Anion-binding exosite of human alpha-thrombin and fibrin(ogen) recognition.

Activation of prothrombin to alpha-thrombin generates not only the catalytic site and associated regions but also an independent site (an exosite) which binds anionic substances, such as Amberlite CG-50 resin [cross-linked poly(methylacrylic acid)]. Like human alpha-thrombin with high fibrinogen clotting activity (peak elution at I = 0.40 +/- 0.01 M, pH 7.4, approximately 23 degrees C), catalytically inactivated forms (e.g., i-Pr2P-alpha- and D-Phe-Pro-Arg-CH2-alpha-thrombins) were eluted with only slightly lower salt concentrations (I = 0.36-0.39 M), while gamma-thrombin with very low clotting activity was eluted with much lower concentrations (I = 0.29 M) and the hirudin complex of alpha-thrombin was not retained by the resin. In a similar manner, hirudin complexes of alpha-, i-Pr2P-alpha-, and gamma-thrombin were not retained by nonpolymerized fibrin-agarose resin. Moreover, the ionic strengths for the elution from the CG-50 resin of seven thrombin forms were directly correlated with those from the fibrin resin (y = 0.15 + 0.96x, r = 0.95). In other experiments, the 17 through 27 synthetic peptide of the human fibrinogen A alpha chain was not an inhibitor of alpha-thrombin, while the NH2-terminal disulfide knot (NDSK) fragment was a simple competitive inhibitor of alpha-thrombin with a Ki approximately 3 microM (0.15 M NaCl, pH 7.3, approximately 23 degrees C). These data suggest that alpha-thrombin recognizes fibrin(ogen) by a negatively charged surface, noncontiguous with the A alpha cleavage site but found within the NDSK fragment. Such interaction involving an anion-binding exosite may explain the exceptional specificity of alpha-thrombin for the A alpha cleavage in fibrinogen and alpha-thrombin incorporation into fibrin clots.[1]

References

  1. Anion-binding exosite of human alpha-thrombin and fibrin(ogen) recognition. Fenton, J.W., Olson, T.A., Zabinski, M.P., Wilner, G.D. Biochemistry (1988) [Pubmed]
 
WikiGenes - Universities