The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

In vivo DNA-binding properties of a yeast transcription activator protein.

UV light can serve as a molecular probe to identify DNA-protein interactions at nucleotide level resolution from intact yeast cells. We have used the photofootprinting technique to determine during which of three regulated states (uninduced, induced, and catabolite repressed) the transcriptional activator protein encoded by GAL4 binds to its recognition sites within the GAL1-GAL10 upstream activating sequence (UASG). GAL4 protein is bound to at least four, and probably five, related sequence blocks within UASG under both induced and uninduced states. GAL4-dependent photofootprints are lost under conditions of catabolite repression. We observed no footprint patterns unique to catabolite-repressed cells, which suggests that binding of a repressor to the UASG is not involved in this process. Photofootprints of the GAL10 TATA element are strictly correlated with transcription: uninduced, catabolite-repressed, and delta gal4 cells exhibit footprints characteristic of the inactive promoter; induced and delta gal80 cells, which express GAL10 constitutively, display footprints unique to the actively transcribed gene.[1]


  1. In vivo DNA-binding properties of a yeast transcription activator protein. Selleck, S.B., Majors, J.E. Mol. Cell. Biol. (1987) [Pubmed]
WikiGenes - Universities