Splicing mutation in human hereditary analbuminemia.
We have identified a structural defect in the serum albumin gene in human analbuminemia. Sequence determination of 1.1 kilobases (kb) of the 5' regulatory region and of 6 kb across exonic regions revealed a single AG-to-GG mutation within the 3' splice site of intron 6 in the defective gene of an analbuminemic individual. In an in vitro assay on the RNA transcript this mutation causes a defect in splicing of the intron 6 sequence and in subsequent ligation of the exon 6-exon 7 sequences. Using polymerase-amplified genomic DNA and allele-specific oligodeoxynucleotide probes, we have also shown that the sequence of this intron 6/exon 7 splice junction is normal in a different, unrelated analbuminemic individual. Analbuminemia in humans is therefore the result of one of multiple defects in our genome.[1]References
- Splicing mutation in human hereditary analbuminemia. Ruffner, D.E., Dugaiczyk, A. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg