The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

In vitro synthesis and and regulation of the biotin enzymes of Escherichia coli K-12.

The synthesis and regulation of two of the enzymes of the biotin operon of Escherichia coli, 7,8-diaminopelargonic acid aminotransferase and dethiobiotin synthetase, were studied in vitro in a coupled transcription-translation system. These enzymes are encoded by genes located on opposite strands of the divergently transcribed operon (A. Guha, Y. Saturen, and W. Szybalski, J. Mol. Biol. 56:53-62, 1971). The kinetics of synthesis of both the enzymes were determined and the efficiency of the system was 0.3 to 0.4% that of the in vivo rate of synthesis in derepressed cells. Guanosine 3'-diphosphate 5'-diphosphate at 0.2 mM concentration stimulated the synthesis of 7,8-diaminopelargonic acid aminotransferase two- to threefold but had no effect on dethiobiotin synthetase synthesis. Biotin, which was most effective as the corepressor in vivo, also functioned in vitro at physiological concentrations in conjunction with a crude repressor protein isolated from a lysogen carrying the bioR gene. However, the two strands showed differential repression. At a repressor concentration where 7,8-diaminopelargonic acid aminotransferase synthesis was completely repressed, the repression of dethiobiotin synthetase was only 20% and did not exceed 50% with increasing repressor concentrations. Although the exact reason for the partial repression remains to be resolved, our data clearly suggest that the biotin operon is regulated from two separate operators.[1]

References

 
WikiGenes - Universities