The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Operon


Psychiatry related information on Operon


High impact information on Operon

  • We report that RfaH recognizes RNA polymerase transcribing RfaH-regulated operons by interacting with the ops sequence in the exposed nontemplate DNA strand of ops-paused transcription complexes [7].
  • In Bacillus spp, genes responsible for thiamin and riboflavin biosynthesis are organized in tightly controllable operons [8].
  • Primer extension analysis showed that OccR protein represses the occR gene and both represses and activates the occQ operon, which is divergently transcribed from occR [9].
  • The transposon had inserted in actA, the second gene of an operon [10].
  • Regulation of bgl operon expression in E. coli occurs by a mechanism involving antitermination of transcription at two termination sites within the operon [11].

Chemical compound and disease context of Operon


Biological context of Operon

  • The direction of transcription of lux operons was deduced from the orientation of mini-Mu insertions in the fusion plasmids [17].
  • The mom operon contains two open reading frames, one of which codes for Mom [18].
  • Induction of transcription of one lux operon required a function encoded by that operon (autoregulation) [17].
  • Segmental differences in stability within the polycistronic transcripts of the puf operon contribute to differential expression of photosynthesis genes in R. capsulatus [19].
  • It has been inferred that suppression of heat-sensitive mutations is confined to dnaA alleles and that this confinement could reflect an interaction between the groE operon products and a dnaA protein aggregate at the replication origin [20].

Anatomical context of Operon


Associations of Operon with chemical compounds

  • Differential translation efficiency explains discoordinate expression of the galactose operon [26].
  • Dual control for transcription of the galactose operon by cyclic AMP and its receptor protein at two interspersed promoters [27].
  • We demonstrate here one such mechanism that employs a single heavy metal receptor protein, MerR, to directly activate transcription of the bacterial mercuric ion resistance operon [28].
  • Because the desamino analogues thus cause derepression of operons under control of the trp repressor, they appear to be 'inducers'. We have determined the crystal structure of the pseudorepressor and refined it to 1.65 A [13].
  • Transcript secondary structures regulate transcription termination at the attenuator of S. marcescens tryptophan operon [4].

Gene context of Operon

  • To determine whether the presence of abnormal proteins stimulates expression of this gene, we examined its transcription using a lon-lacZ operon fusion [29].
  • The operon that encodes the sigma subunit of RNA polymerase also encodes ribosomal protein S21 and DNA primase in E. coli K12 [30].
  • Transcription of the Escherichia coli glnALG operon, whose products are glutamine synthetase and the regulatory proteins NRII and NRI, is activated by nitrogen deprivation [31].
  • Deletion of these REP sequences from the chromosomal operon not only destabilizes upstream malE mRNA, but also results in a 9-fold reduction in the synthesis of MalE protein [32].
  • We find that these genes for the two large subunits of RNA polymerase and the genes, rplL and rplJ, for two ribosomal proteins, form a single operon [33].

Analytical, diagnostic and therapeutic context of Operon


  1. Translational coupling at an intercistronic boundary of the Escherichia coli galactose operon. Schümperli, D., McKenney, K., Sobieski, D.A., Rosenberg, M. Cell (1982) [Pubmed]
  2. Specificity of the bacteriophage lambda N gene product (pN): nut sequences are necessary and sufficient for antitermination by pN. de Crombrugghe, B., Mudryj, M., DiLauro, R., Gottesman, M. Cell (1979) [Pubmed]
  3. Structure of the detoxification catalyst mercuric ion reductase from Bacillus sp. strain RC607. Schiering, N., Kabsch, W., Moore, M.J., Distefano, M.D., Walsh, C.T., Pai, E.F. Nature (1991) [Pubmed]
  4. Transcript secondary structures regulate transcription termination at the attenuator of S. marcescens tryptophan operon. Stroynowski, I., Yanofsky, C. Nature (1982) [Pubmed]
  5. Gene fusion during the evolution of the tryptophan operon in enterobacteriaceae. Miozzari, G.F., Yanofsky, C. Nature (1979) [Pubmed]
  6. Construction and evaluation of nagR-nagAa::lux fusion strains in biosensing for salicylic acid derivatives. Mitchell, R.J., Gu, M.B. Appl. Biochem. Biotechnol. (2005) [Pubmed]
  7. The transcriptional regulator RfaH stimulates RNA chain synthesis after recruitment to elongation complexes by the exposed nontemplate DNA strand. Artsimovitch, I., Landick, R. Cell (2002) [Pubmed]
  8. Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Mironov, A.S., Gusarov, I., Rafikov, R., Lopez, L.E., Shatalin, K., Kreneva, R.A., Perumov, D.A., Nudler, E. Cell (2002) [Pubmed]
  9. The A. tumefaciens transcriptional activator OccR causes a bend at a target promoter, which is partially relaxed by a plant tumor metabolite. Wang, L., Helmann, J.D., Winans, S.C. Cell (1992) [Pubmed]
  10. L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Kocks, C., Gouin, E., Tabouret, M., Berche, P., Ohayon, H., Cossart, P. Cell (1992) [Pubmed]
  11. Transcriptional antitermination in the bgl operon of E. coli is modulated by a specific RNA binding protein. Houman, F., Diaz-Torres, M.R., Wright, A. Cell (1990) [Pubmed]
  12. Termination of transcription and its regulation in the tryptophan operon of E. coli. Platt, T. Cell (1981) [Pubmed]
  13. The structure of trp pseudorepressor at 1.65A shows why indole propionate acts as a trp 'inducer'. Lawson, C.L., Sigler, P.B. Nature (1988) [Pubmed]
  14. The regulatory region of the biotin operon in Escherichia coli. Otsuka, A., Abelson, J. Nature (1978) [Pubmed]
  15. Modulation of the two promoters of the galactose operon of Escherichia coli. Adhya, S., Miller, W. Nature (1979) [Pubmed]
  16. DNA looping and unlooping by AraC protein. Lobell, R.B., Schleif, R.F. Science (1990) [Pubmed]
  17. Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. Engebrecht, J., Nealson, K., Silverman, M. Cell (1983) [Pubmed]
  18. Analysis of the methylation-regulated Mu mom transcript. Plasterk, R.H., Vollering, M., Brinkman, A., Van de Putte, P. Cell (1984) [Pubmed]
  19. An intercistronic stem-loop structure functions as an mRNA decay terminator necessary but insufficient for puf mRNA stability. Chen, C.Y., Beatty, J.T., Cohen, S.N., Belasco, J.G. Cell (1988) [Pubmed]
  20. Demonstration by genetic suppression of interaction of GroE products with many proteins. Van Dyk, T.K., Gatenby, A.A., LaRossa, R.A. Nature (1989) [Pubmed]
  21. Coordinate regulation of beta-lactamase induction and peptidoglycan composition by the amp operon. Tuomanen, E., Lindquist, S., Sande, S., Galleni, M., Light, K., Gage, D., Normark, S. Science (1991) [Pubmed]
  22. Repression of bacterial motility by a novel fimbrial gene product. Li, X., Rasko, D.A., Lockatell, C.V., Johnson, D.E., Mobley, H.L. EMBO J. (2001) [Pubmed]
  23. A nuclear mutant of Arabidopsis with impaired stability on distinct transcripts of the plastid psbB, psbD/C, ndhH, and ndhC operons. Meurer, J., Berger, A., Westhoff, P. Plant Cell (1996) [Pubmed]
  24. A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Hooper, L.V., Xu, J., Falk, P.G., Midtvedt, T., Gordon, J.I. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  25. Ribosome release modulates basal level expression of the trp operon of Escherichia coli. Roesser, J.R., Yanofsky, C. J. Biol. Chem. (1988) [Pubmed]
  26. Differential translation efficiency explains discoordinate expression of the galactose operon. Queen, C., Rosenberg, M. Cell (1981) [Pubmed]
  27. Dual control for transcription of the galactose operon by cyclic AMP and its receptor protein at two interspersed promoters. Musso, R.E., Di Lauro, R., Adhya, S., de Crombrugghe, B. Cell (1977) [Pubmed]
  28. The MerR heavy metal receptor mediates positive activation in a topologically novel transcription complex. O'Halloran, T.V., Frantz, B., Shin, M.K., Ralston, D.M., Wright, J.G. Cell (1989) [Pubmed]
  29. Production of abnormal proteins in E. coli stimulates transcription of lon and other heat shock genes. Goff, S.A., Goldberg, A.L. Cell (1985) [Pubmed]
  30. The operon that encodes the sigma subunit of RNA polymerase also encodes ribosomal protein S21 and DNA primase in E. coli K12. Burton, Z.F., Gross, C.A., Watanabe, K.K., Burgess, R.R. Cell (1983) [Pubmed]
  31. Transcription of glnA in E. coli is stimulated by activator bound to sites far from the promoter. Reitzer, L.J., Magasanik, B. Cell (1986) [Pubmed]
  32. Differential mRNA stability controls relative gene expression within a polycistronic operon. Newbury, S.F., Smith, N.H., Higgins, C.F. Cell (1987) [Pubmed]
  33. Identification of a single promoter in E. coli for rplJ, rplL and rpoBC. Linn, T., Scaife, J. Nature (1978) [Pubmed]
  34. Electron microscopy of gene regulation: the L-arabinose operon. Hirsh, J., Berg, P. Proc. Natl. Acad. Sci. U.S.A. (1976) [Pubmed]
  35. Purification and biophysical characterization of a new [2Fe-2S] ferredoxin from Azotobacter vinelandii, a putative [Fe-S] cluster assembly/repair protein. Jung, Y.S., Gao-Sheridan, H.S., Christiansen, J., Dean, D.R., Burgess, B.K. J. Biol. Chem. (1999) [Pubmed]
  36. The chromosomal arsR gene of Escherichia coli encodes a trans-acting metalloregulatory protein. Xu, C., Shi, W., Rosen, B.P. J. Biol. Chem. (1996) [Pubmed]
  37. Identification of the genes in the Escherichia coli ileS-lsp operon. Analysis of multiple polycistronic mRNAs made in vivo. Miller, K.W., Bouvier, J., Stragier, P., Wu, H.C. J. Biol. Chem. (1987) [Pubmed]
  38. Molecular cloning, sequencing, and physiological characterization of the qox operon from Bacillus subtilis encoding the aa3-600 quinol oxidase. Santana, M., Kunst, F., Hullo, M.F., Rapoport, G., Danchin, A., Glaser, P. J. Biol. Chem. (1992) [Pubmed]
WikiGenes - Universities