The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

vernine     2-amino-9-[3,4-dihydroxy-5...

Synonyms: Ara-G, L-GUANOSINE, Alpha-Ara-G, AG-J-04322, SureCN5550180, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of nucleoside Q

 

Psychiatry related information on nucleoside Q

 

High impact information on nucleoside Q

  • Most, if not all, of the actions of ANP are mediated by activation of particulate guanylyl cyclase with generation of guanosine 3',5'-cyclic monophosphate, which mediates its actions in brain as in the periphery [11].
  • A signaling pathway involving guanosine 3',5'-cyclic monophosphate is activated by sAPP alpha and modulates the activities of potassium channels, N-methyl-D-aspartate receptors, and the transcription factor NF kappa B. Additional functions of beta-APP may include modulation of cell adhesion and regulation of proliferation of nonneuronal cells [12].
  • The small GTPase Rac and the second messenger cGMP (guanosine 3',5'-cyclic monophosphate) are critical regulators of diverse cell functions [13].
  • RESULTS: The sensitivity of glutamate dehydrogenase to inhibition by guanosine 5'-triphosphate was a quarter of the normal level in the patients with sporadic hyperinsulinism-hyperammonemia syndrome and half the normal level in patients with familial cases and their affected relatives, findings consistent with overactivity of the enzyme [14].
  • In two clones of COS-7 cells transfected with the mutant sequence from one patient, the sensitivity of the enzyme to guanosine 5'-triphosphate was reduced, findings similar to those in the child's lymphoblasts [14].
 

Chemical compound and disease context of nucleoside Q

 

Biological context of nucleoside Q

  • Splicing occurs by the same guanosine-initiated transesterification mechanism characteristic of self-splicing group I introns, but is absolutely dependent upon proteins that are presumably required for correct folding of the pre-rRNA [20].
  • The effects of these mutations suggest the formation of a structure involving the U2 snRNA similar to the guanosine-binding site found in the catalytic core of group I introns [21].
  • According to this model, the guanosine cofactor provides the free 3' hydroxyl necessary to initiate a series of three transfers that results in splicing of the pre-rRNA and cyclization of the excised IVS [22].
  • We have also shown that in the present in vitro transcription system, guanosine tetraphosphate (ppGpp) inhibits the synthesis of full-sized RNAs from both start sites in each rRNA operon [23].
  • Based on the principle of microscopic reversibility, this metal ion activates the nucleophilic 3'-hydroxyl of guanosine in the first step of splicing, supporting the model of a two-metal-ion active site [24].
 

Anatomical context of nucleoside Q

 

Associations of nucleoside Q with other chemical compounds

  • The crystal structure of the guanine-nucleotide-binding domain of p21 (amino acids 1-166) complexed to the guanosine triphosphate analogue guanosine-5'-(beta, gamma-imido)triphosphate (GppNp) has been determined at a resolution of 2.6 A [30].
  • Here we demonstrate a novel action of 3',5'-cyclic guanosine monophosphate (cGMP) in stimulating the synthesis of cADPR from beta-NAD+ by activating its synthetic enzyme ADP-ribosyl cyclase in sea urchin eggs and egg homogenates [31].
  • Similarity of biological action was indicated in induction assays by elevation of cyclic adenosine monophosphate and guanosine monophosphate in Daudi B cells but not in CEM T cells [32].
  • The dibutyryl derivative of guanosine 3',5'-monophosphate (cyclic GMP), administered centrally, totally abolishes response to noxious stimuli without depressing the central nervous system [33].
  • The protein appears similar to Ha-MuSV p21ras in that it undergoes immunoprecipitation by monoclonal antibodies directed toward that protein, binds guanosine diphosphate, and is capable of autophosphorylation [34].
 

Gene context of nucleoside Q

  • Self-splicing of isolated td primary transcript occurred only marginally at 28 degrees C, but increased progressively to 50 degrees C, and required the presence of both Mg++ and a guanosine cofactor [35].
  • The small guanosine triphosphatases (GTPases) Cdc42 and Rac1 regulate E-cadherin-mediated cell-cell adhesion [36].
  • We used a complementary DNA subtraction method, representational display analysis, to show that the small guanosine triphosphatase Rac2 is expressed selectively in murine TH1 cells [37].
  • Thus, proteolytic activation of PAK2 represents a guanosine triphosphatase-independent mechanism of PAK regulation that allows PAK2 to regulate morphological changes that are seen in apoptotic cells [38].
  • The isolated Sec23p subunit and the oligomeric complex stimulated guanosine triphosphatase (GTPase) activity of Sar1p 10- to 15-fold but did not activate two other small GTP-binding proteins involved in vesicle traffic (Ypt1p and ARF) [39].
 

Analytical, diagnostic and therapeutic context of nucleoside Q

References

  1. A possible involvement of cya gene in the synthesis of cyclic guanosine 3':5'-monophosphate in E. coli. Shibuya, M., Takebe, Y., Kaziro, Y. Cell (1977) [Pubmed]
  2. GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels. Holz, G.G., Rane, S.G., Dunlap, K. Nature (1986) [Pubmed]
  3. Effects of mycophenolic acid on human immunodeficiency virus infection in vitro and in vivo. Chapuis, A.G., Paolo Rizzardi, G., D'Agostino, C., Attinger, A., Knabenhans, C., Fleury, S., Acha-Orbea, H., Pantaleo, G. Nat. Med. (2000) [Pubmed]
  4. Replicative form of Semliki Forest virus RNA contains an unpaired guanosine. Wengler, G., Wengler, G., Gross, H.S. Nature (1979) [Pubmed]
  5. Thrombin stimulation of guanosine 3',5'-monophosphate formation in murine neuroblastoma cells (clone N1E-115). Snider, R.M., Richelson, E. Science (1983) [Pubmed]
  6. Direct involvement of yeast type I myosins in Cdc42-dependent actin polymerization. Lechler, T., Shevchenko, A., Li, R. J. Cell Biol. (2000) [Pubmed]
  7. Guanosine Inhibits CD40 Receptor Expression and Function Induced by Cytokines and beta Amyloid in Mouse Microglia Cells. D'Alimonte, I., Flati, V., D'Auro, M., Toniato, E., Martinotti, S., Rathbone, M.P., Jiang, S., Ballerini, P., Di Iorio, P., Caciagli, F., Ciccarelli, R. J. Immunol. (2007) [Pubmed]
  8. Mechanism of Ca2+ release in medaka eggs microinjected with inositol 1,4,5-trisphosphate and Ca2+. Iwamatsu, T., Yoshimoto, Y., Hiramoto, Y. Dev. Biol. (1988) [Pubmed]
  9. Effects of acute and chronic 1,3-butanediol treatment on central nervous system function: a comparison with ethanol. Frye, G.D., Chapin, R.E., Vogel, R.A., Mailman, R.B., Kilts, C.D., Mueller, R.A., Breese, G.R. J. Pharmacol. Exp. Ther. (1981) [Pubmed]
  10. Central Nervous System Functions of PAK Protein Family: From Spine Morphogenesis to Mental Retardation. Boda, B., Nikonenko, I., Alberi, S., Muller, D. Mol. Neurobiol. (2006) [Pubmed]
  11. Atrial natriuretic peptide in brain and pituitary gland. Gutkowska, J., Antunes-Rodrigues, J., McCann, S.M. Physiol. Rev. (1997) [Pubmed]
  12. Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Mattson, M.P. Physiol. Rev. (1997) [Pubmed]
  13. A Rac-cGMP Signaling Pathway. Guo, D., Tan, Y.C., Wang, D., Madhusoodanan, K.S., Zheng, Y., Maack, T., Zhang, J.J., Huang, X.Y. Cell (2007) [Pubmed]
  14. Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. Stanley, C.A., Lieu, Y.K., Hsu, B.Y., Burlina, A.B., Greenberg, C.R., Hopwood, N.J., Perlman, K., Rich, B.H., Zammarchi, E., Poncz, M. N. Engl. J. Med. (1998) [Pubmed]
  15. A pertussis toxin-sensitive G protein in hippocampal long-term potentiation. Goh, J.W., Pennefather, P.S. Science (1989) [Pubmed]
  16. Histamine H1 receptor-mediated guanosine 3',5'-monophosphate formation by cultured mouse neuroblastoma cells. Richelson, E. Science (1978) [Pubmed]
  17. The guanosine nucleotide (p)ppGpp initiates development and A-factor production in myxococcus xanthus. Harris, B.Z., Kaiser, D., Singer, M. Genes Dev. (1998) [Pubmed]
  18. Adenosine diphosphate (ADP)-ribosylation of the guanosine triphosphatase (GTPase) rho in resting peripheral blood human T lymphocytes results in pseudopodial extension and the inhibition of T cell activation. Woodside, D.G., Wooten, D.K., McIntyre, B.W. J. Exp. Med. (1998) [Pubmed]
  19. Identification of a human cDNA encoding a functional high affinity lipoxin A4 receptor. Fiore, S., Maddox, J.F., Perez, H.D., Serhan, C.N. J. Exp. Med. (1994) [Pubmed]
  20. Protein-dependent splicing of a group I intron in ribonucleoprotein particles and soluble fractions. Garriga, G., Lambowitz, A.M. Cell (1986) [Pubmed]
  21. Mutational analysis of the yeast U2 snRNA suggests a structural similarity to the catalytic core of group I introns. McPheeters, D.S., Abelson, J. Cell (1992) [Pubmed]
  22. In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cech, T.R., Zaug, A.J., Grabowski, P.J. Cell (1981) [Pubmed]
  23. Identification of initiation sites for the in vitro transcription of rRNA operons rrnE and rrnA in E. coli. Gilbert, S.F., de Boer, H.A., Nomura, M. Cell (1979) [Pubmed]
  24. A second catalytic metal ion in group I ribozyme. Weinstein, L.B., Jones, B.C., Cosstick, R., Cech, T.R. Nature (1997) [Pubmed]
  25. Questioning of reported evidence for guanosine tetraphosphate synthesis in a ribosome system from mouse embryos. Martini, O., Irr, J., Richter, D. Cell (1977) [Pubmed]
  26. Detection in HeLa cell extracts of a 7-methyl guanosine specific enzyme activity that cleaves m7GpppNm. Nuss, D.L., Furuichi,, Y., Koch, G., Shatkin, A.J. Cell (1975) [Pubmed]
  27. G protein activation of a hormone-stimulated phosphatase in human tumor cells. Pan, M.G., Florio, T., Stork, P.J. Science (1992) [Pubmed]
  28. Receptor-coupled activation of phosphoinositide-specific phospholipase C by an N protein. Smith, C.D., Cox, C.C., Snyderman, R. Science (1986) [Pubmed]
  29. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Kimura, K., Ito, M., Amano, M., Chihara, K., Fukata, Y., Nakafuku, M., Yamamori, B., Feng, J., Nakano, T., Okawa, K., Iwamatsu, A., Kaibuchi, K. Science (1996) [Pubmed]
  30. Structure of the guanine-nucleotide-binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation. Pai, E.F., Kabsch, W., Krengel, U., Holmes, K.C., John, J., Wittinghofer, A. Nature (1989) [Pubmed]
  31. cGMP mobilizes intracellular Ca2+ in sea urchin eggs by stimulating cyclic ADP-ribose synthesis. Galione, A., White, A., Willmott, N., Turner, M., Potter, B.V., Watson, S.P. Nature (1993) [Pubmed]
  32. Tripeptide structure of bursin, a selective B-cell-differentiating hormone of the bursa of fabricius. Audhya, T., Kroon, D., Heavner, G., Viamontes, G., Goldstein, G. Science (1986) [Pubmed]
  33. Guanosine 3',5'-monophosphate: a central nervous system regulator of analgesia. Cohn, M.L., Cohn, M., Taylor, P.H. Science (1978) [Pubmed]
  34. High-level expression in Escherichia coli of enzymatically active Harvey murine sarcoma virus p21ras protein. Lautenberger, J.A., Ulsh, L., Shih, T.Y., Papas, T.S. Science (1983) [Pubmed]
  35. Characterization of the intron in the phage T4 thymidylate synthase gene and evidence for its self-excision from the primary transcript. Chu, F.K., Maley, G.F., West, D.K., Belfort, M., Maley, F. Cell (1986) [Pubmed]
  36. Role of IQGAP1, a target of the small GTPases Cdc42 and Rac1, in regulation of E-cadherin- mediated cell-cell adhesion. Kuroda, S., Fukata, M., Nakagawa, M., Fujii, K., Nakamura, T., Ookubo, T., Izawa, I., Nagase, T., Nomura, N., Tani, H., Shoji, I., Matsuura, Y., Yonehara, S., Kaibuchi, K. Science (1998) [Pubmed]
  37. Role of the guanosine triphosphatase Rac2 in T helper 1 cell differentiation. Li, B., Yu, H., Zheng, W., Voll, R., Na, S., Roberts, A.W., Williams, D.A., Davis, R.J., Ghosh, S., Flavell, R.A. Science (2000) [Pubmed]
  38. Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Rudel, T., Bokoch, G.M. Science (1997) [Pubmed]
  39. Requirement for a GTPase-activating protein in vesicle budding from the endoplasmic reticulum. Yoshihisa, T., Barlowe, C., Schekman, R. Science (1993) [Pubmed]
  40. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Kruger, K., Grabowski, P.J., Zaug, A.J., Sands, J., Gottschling, D.E., Cech, T.R. Cell (1982) [Pubmed]
  41. Atrial natriuretic peptide inhibits a cation channel in renal inner medullary collecting duct cells. Light, D.B., Schwiebert, E.M., Karlson, K.H., Stanton, B.A. Science (1989) [Pubmed]
  42. Requirement of guanosine triphosphate-bound ran for signal-mediated nuclear protein export. Richards, S.A., Carey, K.L., Macara, I.G. Science (1997) [Pubmed]
  43. Diurnal expression of transducin mRNA and translocation of transducin in rods of rat retina. Brann, M.R., Cohen, L.V. Science (1987) [Pubmed]
  44. Inhibition of the hammerhead ribozyme cleavage reaction by site-specific binding of Tb. Feig, A.L., Scott, W.G., Uhlenbeck, O.C. Science (1998) [Pubmed]
 
WikiGenes - Universities