The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Pre-steady-state kinetics of ribosomal translocation.

The two partial reactions of elongation factor G dependent translocation, the release of deacylated tRNA from the P site and the displacement of peptidyl tRNA from the A to the P site, have been studied with the stopped-flow technique. The experiments were performed with poly(U)-programmed ribosomes from Escherichia coli carrying deacylated tRNAPhe in the P site and N-AcPhe-tRNAPhe in the A site in the presence of GTP. The kinetics of the reaction were followed by monitoring either the intensity or the polarization of the fluorescence of both wybutine and proflavine located in the anticodon loop or of proflavine located in the D loop of yeast tRNAPhe or N-AcPhe-tRNAPhe. Both displacement and release fluorescence changes could be described by three exponentials, exhibiting apparent first-order rate-constants (20 degrees C) of 2 to 5 s-1 (15 s-1, 35 degrees C), 0.1 to 0.3 s-1, and 0.01 to 0.02 s-1, measured with a saturating concentration of elongation factor G (1 microM). The activation energy for the fast process of both reactions was found to be 70 kJ/mol (17 kcal/mol), while the intermediate process exhibits an activation energy of 30 kJ/mol (7 kcal/mol). The fast step is assigned to the displacement of the N-AcPhe-tRNAPhe from the A to the P site, and to the release of the tRNAPhe from the P site. The reactions take place simultaneously to form an intermediate post-translocation complex. The latter, in the intermediate step, rearranges to form a post-translocation complex carrying the deacylated tRNAPhe in an exit site and N-AcPhe-tRNAPhe in the P site, both in their equilibrium states. In parallel, or subsequently, the deacylated tRNAPhe spontaneously dissociates from the ribosome, thus completing the translocation process. The slow process has not been assigned.[1]

References

  1. Pre-steady-state kinetics of ribosomal translocation. Robertson, J.M., Paulsen, H., Wintermeyer, W. J. Mol. Biol. (1986) [Pubmed]
 
WikiGenes - Universities