The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

ECs4191  -  elongation factor G

Escherichia coli O157:H7 str. Sakai

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of ECs4191

 

High impact information on ECs4191

  • Ribosome recycling factor (RRF) disassembles posttermination complexes in conjunction with elongation factor EF-G, liberating ribosomes for further rounds of translation [6].
  • These results show that 4.5S RNA physically associates with the ribosome in performing its essential function, and that this association is mediated by elongation factor G [7].
  • Furthermore, our finding indicates a two-step mechanism of translocation: first, relative rotation of the subunits and opening of the mRNA channel following binding of GTP to EF-G; and second, advance of the mRNA/(tRNA)2 complex in the direction of the rotation of the 30S subunit, following GTP hydrolysis [1].
  • Elongation factor G (EF-G) is a GTPase that is involved in the translocation of bacterial ribosomes along messenger RNA during protein biosynthesis [8].
  • In the canonical scheme, one molecule of GTP is hydrolyzed in the EF-Tu-dependent binding of aa-tRNA to the ribosome, and a second molecule is hydrolyzed in the elongation factor-G (EF-G)-mediated translocation of the polypeptide from the ribosomal A site to the P site [9].
 

Chemical compound and disease context of ECs4191

 

Biological context of ECs4191

  • Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome [8].
  • Complementation studies and analyses of the DNA and protein sequences revealed that the tos gene encodes a 59,442-Da protein, with sequence homology to elongation factor EF-G, including G-domain motifs, and that the tos-1 insertion eliminated the C-terminal one-fifth of the protein [15].
  • RF3 is a protein with a molecular weight of 59,460 containing 528 amino acids and displays much similarity to elongation factor EF-G, a GTP binding protein necessary for ribosomal translocation, and other GTP binding proteins known or thought to interact with the ribosome [16].
  • [14C]tRNALys at the P site and Ac[3H]Lys-tRNALys at the A site of poly(A)-primed ribosomes were translocated to the E and P sites, respectively, by means of elongation factor G. The E site-bound [14C]tRNALys could be significantly chased by cognate tRNALys but not by non-cognate tRNAPhe, indicating the coded nature of the E site binding [17].
  • IF-2 levels remain constant as cells double more rapidly, WHEREAS THE EF-G content increases with more rapid cell growth [18].
 

Anatomical context of ECs4191

 

Associations of ECs4191 with chemical compounds

  • To restrict the intramolecular mobility, two cysteine residues were engineered into domains 1 and 5 of EF-G that spontaneously formed a disulfide cross-link [23].
  • In contrast, fusidic acid and a GTP analog that fix EF-G to the ribosome, allowing one round of tRNA translocation, inhibited mRNA but not tRNA release from the complex [24].
  • A soluble protein factor was isolated, free of elongation factor (EF)-T and EF-G, based on its ability to stimulate the synthesis of peptide bonds using ribosomal bound 70S-AUG-N-formyl-[35S]methionyl-tRNA complex and added puromycin as substrates [25].
  • Structurally, thiostrepton interferes with EF-G footprints in the alpha-sarcin stem loop (A2660, A2662) located in domain VI of 23S rRNA [26].
  • Function of sulfhydryl groups in ribosome-elongation factor G reactions. Assignment of guanine nucleotide binding site to elongation factor G [27].
 

Other interactions of ECs4191

 

Analytical, diagnostic and therapeutic context of ECs4191

References

  1. A ratchet-like inter-subunit reorganization of the ribosome during translocation. Frank, J., Agrawal, R.K. Nature (2000) [Pubmed]
  2. Elongation factor G participates in ribosome disassembly by interacting with ribosome recycling factor at their tRNA-mimicry domains. Ito, K., Fujiwara, T., Toyoda, T., Nakamura, Y. Mol. Cell (2002) [Pubmed]
  3. Bovine mitochondrial ribosomes. Elongation factor specificity. Eberly, S.L., Locklear, V., Spremulli, L.L. J. Biol. Chem. (1985) [Pubmed]
  4. Phosphorylation of elongation factor G and ribosomal protein S6 in bacteriophage T7-infected Escherichia coli. Robertson, E.S., Aggison, L.A., Nicholson, A.W. Mol. Microbiol. (1994) [Pubmed]
  5. Small clusters of divergent amino acids surrounding the effector domain mediate the varied phenotypes of EF-G and LepA expression. Yaskowiak, E.S., March, P.E. Mol. Microbiol. (1995) [Pubmed]
  6. Orientation of ribosome recycling factor in the ribosome from directed hydroxyl radical probing. Lancaster, L., Kiel, M.C., Kaji, A., Noller, H.F. Cell (2002) [Pubmed]
  7. Mutations in the gene for EF-G reduce the requirement for 4.5S RNA in the growth of E. coli. Brown, S. Cell (1987) [Pubmed]
  8. Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome. Rodnina, M.V., Savelsbergh, A., Katunin, V.I., Wintermeyer, W. Nature (1997) [Pubmed]
  9. Toward a model for the interaction between elongation factor Tu and the ribosome. Weijland, A., Parmeggiani, A. Science (1993) [Pubmed]
  10. Truncated elongation factor G lacking the G domain promotes translocation of the 3' end but not of the anticodon domain of peptidyl-tRNA. Borowski, C., Rodnina, M.V., Wintermeyer, W. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  11. Immunological comparison of the proteins of chicken and rat liver ribosomes. Fischer, N., Stöffler, G., Wool, I.G. J. Biol. Chem. (1978) [Pubmed]
  12. Selective chemical modification of Escherichia coli elongation factor G. N-Ethylmaleimide modification of a cysteine essential for nucleotide binding. Rohrbach, M.S., Bodley, J.W. J. Biol. Chem. (1976) [Pubmed]
  13. Chemical modification in situ of Escherichia coli 50 S ribosomal proteins by the site-specific reagent pyridoxal phosphate. Inactivation of the elongation factor-G-dependent GTPase and of the association with the small ribosomal subunit. Ohsawa, H., Ohsawa, E., Giovane, A., Gualerzi, C. J. Biol. Chem. (1983) [Pubmed]
  14. Purification and characterization of Saccharomyces cerevisiae mitochondrial elongation factor Tu. Rosenthal, L.P., Bodley, J.W. J. Biol. Chem. (1987) [Pubmed]
  15. Identification of the prfC gene, which encodes peptide-chain-release factor 3 of Escherichia coli. Mikuni, O., Ito, K., Moffat, J., Matsumura, K., McCaughan, K., Nobukuni, T., Tate, W., Nakamura, Y. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  16. Localization and characterization of the gene encoding release factor RF3 in Escherichia coli. Grentzmann, G., Brechemier-Baey, D., Heurgue, V., Mora, L., Buckingham, R.H. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  17. Codon-anticodon interaction at the ribosomal E site. Rheinberger, H.J., Sternbach, H., Nierhaus, K.H. J. Biol. Chem. (1986) [Pubmed]
  18. Regulation of initiation and elongation factor levels in Escherichia coli as assessed by a quantitative immunoassay. Krauss, S.W., Leder, P. J. Biol. Chem. (1975) [Pubmed]
  19. Stoichiometry of polypeptide chain elongation. Cabrer, B., San-Millian, M.J., Vazquez, D., Modolell, J. J. Biol. Chem. (1976) [Pubmed]
  20. Purification and characterization of elongation factor G from bovine liver mitochondria. Chung, H.K., Spremulli, L.L. J. Biol. Chem. (1990) [Pubmed]
  21. Purification and properties of rabbit reticulocyte protein synthesis elongation factor 2. Merrick, W.C., Kemper, W.M., Kantor, J.A., Anderson, W.F. J. Biol. Chem. (1975) [Pubmed]
  22. Studies on the inhibition of protein synthesis by selenodiglutathione. Vernie, L.N., Collard, J.G., Eker, A.P., de Wildt, A., Wilders, I.T. Biochem. J. (1979) [Pubmed]
  23. Conformationally restricted elongation factor G retains GTPase activity but is inactive in translocation on the ribosome. Peske, F., Matassova, N.B., Savelsbergh, A., Rodnina, M.V., Wintermeyer, W. Mol. Cell (2000) [Pubmed]
  24. Post-termination complex disassembly by ribosome recycling factor, a functional tRNA mimic. Hirokawa, G., Kiel, M.C., Muto, A., Selmer, M., Raj, V.S., Liljas, A., Igarashi, K., Kaji, H., Kaji, A. EMBO J. (2002) [Pubmed]
  25. Identification of a soluble protein that stimulates peptide bond synthesis. Glick, B.R., Ganoza, M.C. Proc. Natl. Acad. Sci. U.S.A. (1975) [Pubmed]
  26. Thiostrepton inhibits the turnover but not the GTPase of elongation factor G on the ribosome. Rodnina, M.V., Savelsbergh, A., Matassova, N.B., Katunin, V.I., Semenkov, Y.P., Wintermeyer, W. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  27. Function of sulfhydryl groups in ribosome-elongation factor G reactions. Assignment of guanine nucleotide binding site to elongation factor G. Marsh, R.C., Chinali, G., Parmeggiani, A. J. Biol. Chem. (1975) [Pubmed]
  28. Characterization of the GTPase reaction of elongation factor Tu. Determination of the stereochemical course in the presence of antibiotic X5108. Eccleston, J.F., Webb, M.R. J. Biol. Chem. (1982) [Pubmed]
  29. Identification of the major oxidatively damaged proteins in Escherichia coli cells exposed to oxidative stress. Tamarit, J., Cabiscol, E., Ros, J. J. Biol. Chem. (1998) [Pubmed]
  30. The fourth step of protein synthesis: disassembly of the posttermination complex is catalyzed by elongation factor G and ribosome recycling factor, a near-perfect mimic of tRNA. Kaji, A., Kiel, M.C., Hirokawa, G., Muto, A.R., Inokuchi, Y., Kaji, H. Cold Spring Harb. Symp. Quant. Biol. (2001) [Pubmed]
  31. UGA suppression by a mutant RNA of the large ribosomal subunit. Jemiolo, D.K., Pagel, F.T., Murgola, E.J. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  32. Initiation factor IF2, thiostrepton and micrococcin prevent the binding of elongation factor G to the Escherichia coli ribosome. Cameron, D.M., Thompson, J., March, P.E., Dahlberg, A.E. J. Mol. Biol. (2002) [Pubmed]
  33. Levels of ribosomal protein S1 and elongation factor G in the growth cycle of Escherichia coli. Lambert, J.M., Boileau, G., Howe, J.G., Traut, R.R. J. Bacteriol. (1983) [Pubmed]
 
WikiGenes - Universities